08/23 Lecture 1. Categories. (Notes)
08/25 Lecture 2. Universal properties I. (Notes / Video)
08/27 Lecture 3. Universal properties II. (Notes / Video)
08/30 Lecture 4. The category of groups. (Notes / Video).
09/01 Lecture 5. Examples of groups I. (Notes / Video)
09/03 Lecture 6. Examples of groups II. (Notes / Video)
09/08 Lecture 7. Product, kernels, images. (Notes / Video)
09/10 Lecture 8. Cyclic groups. (Notes / Video)
09/15 Lecture 9. Dihedral groups. (Notes / Video)
09/17 Lecture 10. Quotients. (Notes / Video)
09/20 Lecture 11. Cokernels. (Notes / Video)
09/22 Lecture 12. Free groups. (Notes / Video)
09/24 Lecture 13. Presentations. (Notes / Video)
09/27 Lecture 14. Coproducts. (Notes / Video)
09/29 Lecture 15. Group actions. (Notes / Video)
10/01 Lecture 16. Orbits and stabilizers. (Notes / Video)
10/04 Lecture 17. Conjugation. (Notes / Video)
10/06 Lecture 18. The Sylow theorems. (Notes / Video)
10/08 Lecture 19. Simple groups. (Notes / Video)
10/11 Lecture 20. Composition series. (Notes / Video)
10/13 Lecture 21. Solvable groups. (Notes / Video)
10/15 Lecture 22. The symmetric group. (Notes / Video)
10/18 Lecture 23. The alternating group. (Notes / Video)
10/20 Lecture 24. Simplicity of the alternating group. (Notes / Video)
10/22 Lecture 25. Semidirect products. (Notes / Video)
10/25 Lecture 26. Rings. (Notes / Video)
10/27 Lecture 27. Ideals. (Notes / Video)
11/01 Lecture 28. Quotient rings. (Notes / Video)
11/03 Lecture 29. Polynomial rings. (Notes / Video)
11/05 Lecture 30. Prime and maximal ideals. (Notes / Video)
11/08 Lecture 31. Prime and irreducible elements. (Notes / Video)
11/10 Lecture 32. The Hilbert basis theorem. (Notes / Video)
11/12 Lecture 33. Unique factorization domains. (Notes / Video)
11/15 Lecture 34. Irreducibles in k[x]. (Notes / Video)
11/17 Lecture 35. Factorization in R[x]. (Notes / Video)
11/19 Lecture 36. Irreducibles in R[x]. (Notes / Video)
11/22 Lecture 37. Modules. (Notes / Video)
11/24 lecture 38. The category of modules: basic properties. (Notes / Video)
11/29 Lecture 39. Finiteness properties of modules. (Notes / Video)
12/01 Lecture 40. Modules over a PID I. (Video)
12/03 Lecture 41./. Modules over a PID II. (Video)