AT-Drone: Benchmarking Adaptive Teaming in Multi-Drone Pursuit
Under Reviewed
Under Reviewed
Adaptive teaming-the capability of agents to effectively collaborate with unfamiliar teammates without prior coordination-is widely explored in virtual video games but overlooked in real-world multi-robot contexts. Yet, such adaptive collaboration is crucial for real-world applications, including border surveillance, search-and-rescue, and counter-terrorism operations. To address this gap, we introduce AT-Drone, the first dedicated benchmark explicitly designed to facilitate comprehensive training and evaluation of adaptive teaming strategies in multi-drone pursuit scenarios. AT-Drone makes the following key contributions: (1) An adaptable simulation environment configurator that enables intuitive and rapid setup of adaptive teaming multi-drone pursuit tasks, including four predefined pursuit environments. (2) A streamlined real-world deployment pipeline that seamlessly translates simulation insights into practical drone evaluations using edge devices and Crazyflie drones. (3) A novel algorithm zoo integrated with a distributed training framework, featuring diverse algorithms explicitly tailored, for the first time, to multi-pursuer and multi-evader settings. (4) Standardized evaluation protocols with newly designed unseen drone zoos, explicitly designed to rigorously assess the performance of adaptive teaming. Comprehensive experimental evaluations across four progressively challenging multi-drone pursuit scenarios confirm AT-Drone's effectiveness in advancing adaptive teaming research. Real-world drone experiments further validate its practical feasibility and utility for realistic robotic operations.
Overview of AT-Drone Benchmark
Comparison of AT-Drone Benchmark with related works
Due to the double-blind review requirement, we are currently unable to share the public repository. We will release it once it is permissible to do so. If you are the reviewer, please refer to the Supplementary Material for access to our code. Thank you for your understanding and patience.