6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.
The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Example applications include: diodes, transistors, memory, energy storage, optoelectronic devices, spintronic devices, photonic devices, molecular devices, plasmonic devices, flexible devices, sensors and detectors, quantum computing, soft actuators, electromechanical systems, bioelectronics, neuromorphic system, solid-state battery, supercapacitor, quantum detectors, power devices, subthreshhold electronics, and memristors. This journal also handles papers that describe the theory, modeling, and simulation of electronic materials, novel preparation and characterization of electronic materials, micro/nano-electronic fabrication and device materials that have important applications.
Aviation-electronics engineering and Aviation-telecommunications engineering, are concerned with aerospace applications. Aviation-telecommunication engineers include specialists who work on airborne avionics in the aircraft or ground equipment. Specialists in this field mainly need knowledge of computer, networking, IT, and sensors. These courses are offered at such as Civil Aviation Technology Colleges.[2][3]
VLSI design engineering VLSI stands for very large scale integration. It deals with fabrication of ICs and various electronic components. In designing an integrated circuit, electronics engineers first construct circuit schematics that specify the electrical components and describe the interconnections between them. When completed, VLSI engineers convert the schematics into actual layouts, which map the layers of various conductor and semiconductor materials needed to construct the circuit.
Some electronics engineers also choose to pursue a postgraduate degree such as a Master of Science, Doctor of Philosophy in Engineering, or an Engineering Doctorate. The master's degree is being introduced in some European and American Universities as a first degree and the differentiation of an engineer with graduate and postgraduate studies is often difficult. In these cases, experience is taken into account. The master's degree may consist of either research, coursework or a mixture of the two. The Doctor of Philosophy consists of a significant research component and is often viewed as the entry point to academia.
Apart from electromagnetics and network theory, other items in the syllabus are particular to electronics engineering course. Electrical engineering courses have other specialisms such as machines, power generation, and distribution. This list does not include the extensive engineering mathematics curriculum that is a prerequisite to a degree.[6][7]
During these years, the study of electricity was largely considered to be a subfield of physics since the early electrical technology was considered electromechanical in nature. The Technische UniversitÃt Darmstadt founded the world's first department of electrical engineering in 1882 and introduced the first degree course in electrical engineering in 1883.[12] The first electrical engineering degree program in the United States was started at Massachusetts Institute of Technology (MIT) in the physics department under Professor Charles Cross, [13] though it was Cornell University to produce the world's first electrical engineering graduates in 1885.[14] The first course in electrical engineering was taught in 1883 in Cornell's Sibley College of Mechanical Engineering and Mechanic Arts.[15]
Electrical engineers typically possess an academic degree with a major in electrical engineering, electronics engineering, electrical engineering technology,[90] or electrical and electronic engineering.[91][92] The same fundamental principles are taught in all programs, though emphasis may vary according to title. The length of study for such a degree is usually four or five years and the completed degree may be designated as a Bachelor of Science in Electrical/Electronics Engineering Technology, Bachelor of Engineering, Bachelor of Science, Bachelor of Technology, or Bachelor of Applied Science, depending on the university. The bachelor's degree generally includes units covering physics, mathematics, computer science, project management, and a variety of topics in electrical engineering.[93] Initially such topics cover most, if not all, of the subdisciplines of electrical engineering. At some schools, the students can then choose to emphasize one or more subdisciplines towards the end of their courses of study.
APh/EE 9. Solid-State Electronics for Integrated Circuits.6 units (2-2-2); first term.Introduction to solid-state electronics including device fabrication. Topics: semiconductor crystal growth and device fabrication technology, carrier modeling, doping, generation and recombination, pn junction diodes, MOS capacitor and MOS transistor operation, and deviations from ideal behavior. Laboratory includes fabrication and testing of semiconductor devices. Students learn photolithography, the use of vacuum systems, furnaces, analytical microscopy and device-testing equipment.Instructor: Scherer.
APh 78 abc. Senior Thesis, Experimental.9 units (0-9-0); first, second, third terms.Prerequisites: instructor's permission.Supervised experimental research, open only to senior-class applied physics majors. Requirements will be set by individual faculty member, but must include a written report. The selection of topic must be approved by the Applied Physics Option Representative. Not offered on a pass/fail basis. Final grade based on written thesis and oral exam.Instructor: Staff.
APh 79 abc. Senior Thesis, Theoretical.9 units (0-9-0); first, second, third terms.Prerequisites: instructor's permission.Supervised theoretical research, open only to senior-class applied physics majors. Requirements will be set by individual faculty member, but must include a written report. The selection of topic must be approved by the Applied Physics Option Representative. Not offered on a pass/fail basis. Final grade based on written thesis and oral exam. This course cannot be used to satisfy the laboratory requirement in APh.Instructor: Staff.
APh/EE 109. Introduction to the Micro/Nanofabrication Lab.9 units (0-6-3); first, second, third terms.Introduction to techniques of micro-and nanofabrication, including solid-state, optical, and microfluidic devices. Students will be trained to use fabrication and characterization equipment available in the applied physics micro- and nanofabrication lab. Topics include Schottky diodes, MOS capacitors, light-emitting diodes, microlenses, microfluidic valves and pumps, atomic force microscopy, scanning electron microscopy, and electron-beam writing.Instructor: Staff.
APh 110. Topics in Applied Physics.2 units (2-0-0); first, second terms.A seminar course designed to acquaint advanced undergraduates and first-year graduate students with the various research areas represented in the option. Lecture each week given by a different member of the APh faculty, who will review his or her field of research. Graded pass/fail.Instructor: Bellan.
APh 114 abc. Solid-State Physics.9 units (3-0-6); first, second, third terms.Prerequisites: Ph 125 abc or equivalent.Introductory lecture and problem course dealing with experimental and theoretical problems in solid-state physics. Topics include crystal structure, symmetries in solids, lattice vibrations, electronic states in solids, transport phenomena, semiconductors, superconductivity, magnetism, ferroelectricity, defects, and optical phenomena in solids.Instructors: Nadj-Perge, Schwab.
APh/Ph 115. Physics of Momentum Transport in Hydrodynamic Systems.9 units (3-0-6); second term.Prerequisites: ACM 95 or equivalent.Contemporary research in many areas of physics requires some knowledge of the principles governing hydrodynamic phenomena such as nonlinear wave propagation, symmetry breaking in pattern forming systems, phase transitions in fluids, Langevin dynamics, micro- and optofluidic control, and biological transport at low Reynolds number. This course offers students of pure and applied physics a self-contained treatment of the fundamentals of momentum transport in hydrodynamic systems. Mathematical techniques will include formalized dimensional analysis and rescaling, asymptotic analysis to identify dominant force balances, similitude, self-similarity and perturbation analysis for examining unidirectional and Stokes flow, pulsatile flows, capillary phenomena, spreading films, oscillatory flows, and linearly unstable flows leading to pattern formation. Students must have working knowledge of vector calculus, ODEs, PDEs, complex variables and basic tensor analysis. Advanced solution methods will be taught in class as needed. Not offered 2022-23.
38c6e68cf9