Analysis Seminar
School of Applied Mathematical and Physical Sciences, Department of Mathematics
Co-organizer: Marina Iliopoulou (from NKUA)
All talks in NTUA at the Seminar Room of the School of Applied Mathematical and Physical Sciences, 2nd Floor, Building E.
All talks in NKUA at the Department of Mathematics, Room Γ31.
Spring 2025
Monday, January 13, 2025 (ΣΕΜΦΕ, at 13:00)
Vlassis Mastrantonis, University of Maryland
An interplay between Bergman, Mahler, and Bourgain
Abstract: We prove, in dimension 2, a sharp lower bound on the Bergman kernels of tube domains, verifying a conjecture of Blocki in this case. In the process, we discuss the connection between Bergman kernels of tube domains and Mahler volumes, building on the work of Nazarov, Blocki, and Berndtsson. This motivates the introduction of Lp analogues of Mahler volumes, which correspond to Bergman kernels when p=1 and recover the classical Mahler volume for p=\infty. With these definitions, Blocki's conjecture is reformulated as an L1-Mahler conjecture, which allows us to apply well-established techniques.
Time permitting, we will discuss the relationship between the Bergman metric and the isotropic constant, explaining how an old theorem of Kobayashi can be used to derive an upper bound on the isotropic constant.
This is partly joint work with Rubinstein and Berndtsson. pdf
Friday, January 17, 2025
Spyros Petrakos, University of Münster (ΕΚΠΑ, at 15:00, Room Γ31)
The small boundary property and classifiability of crossed products
Abstract: The small boundary property – introduced in the late ’90s by Lindenstrauss in relation to mean dimension, topological entropy, and shift embeddability – has somewhat recently taken a prominent role in the classification theory for crossed product C*-algebras. In this talk, we will give a gentle primer to the latter, introduce the SBP, and discuss criteria for it to hold. Based on joint work with David Kerr and Grigoris Kopsacheilis. pdf
Friday, January 31, 2025
Konstantinos Gkikas, University of the Aegean
TBA
Monday, February 3, 2025
Ioannis Giannoulis, University of Ioannina
TBA
Monday, February 10, 2025
Athanasios Chatzikaleas, École Polytechnique Fédérale de Lausanne
TBA
Monday, March 10, 2025
Konstantinos Maronikolakis, Bilkent University, Ankara
TBA
Monday, April 7, 2025
Christos Tantalakis, Warsaw University
TBA
Monday, May 26, 2025
Gerassimos Barbatis, National and Kapodistrian University of Athens
TBA
Monday, June 2, 2025
Beatrice-Helen Vritsiou, University of Alberta
TBA
Monday, June 23, 2025
Georgios Baziotis, University of Delaware
TBA
Fall 2024
Monday, October 21, 2024 (ΣΕΜΦΕ, at 13:00)
Dimitrios Charamaras, École Polytechnique Fédérale de Lausanne
Mean value theorems in multiplicative systems
Abstract: In this talk, we will discuss about additive ergodic averages in multiplicative measure-preserving systems. These objects are the natural ergodic extension of mean values of multiplicative functions, the behaviour of which is known by the celebrated mean value theorem of Halász. Consequently, the study of these objects allows us to transfer principles, ideas and theorems in multiplicative number theory from the setting of integers to the more general one of dynamics.
We will show a new mean theorem for these systems, which is a far-reaching dynamical extension of (a special case of) Halász's theorem. In addition, motivated by a number-theoretic principle asserting that, under no local obstructions, additive and multiplicative structures of the integers should be independent, we discuss correlations of such structures in dynamics. Finally, we will give some combinatorial applications. pdf
Friday, November 1, 2024 (ΣΕΜΦΕ, at 13:00)
Stamatis Pouliasis, University of Thessaly
Weighted Dirichlet spaces and de Branges-Rovnyak spaces
Abstract: The topic of this talk is the relation between two types of Hilbert spaces of holomorphic functions in the unit disc, weighted Dirichlet spaces and de Branges-Rovnyak spaces. We will give the definitions and some of their main properties, review some recent results and examine when a weighted Dirichlet space can be identified with a de Branges-Rovnyak space. pdf
Monday, November 11, 2024 (ΣΕΜΦΕ, at 13:30)
Nikolaos Roidos, University of Patras
Maximal regularity for the Laplacian on manifolds with edges
Abstract: We describe an R-sectoriality perturbation technique for non-commuting operators defined in Bochner spaces. Based on this and on bounded H^{\infty}-calculus results on manifolds with conical singularities, we obtain maximal regularity for the Laplacian on manifolds with edge type singularities in appropriate weighted Sobolev spaces. pdf
Monday, November 25, 2024 (ΣΕΜΦΕ, at 13:00)
Georgios Gavrilopoulos, ETH Zürich
Isotonic Distributional Regression: Calibration and Consistency
Abstract: Probabilistic prediction has recently emerged as a highly promising statistical paradigm, driven largely by advancements in generative models within machine learning. Unlike traditional approaches that estimate only the conditional mean or specific quantiles, probabilistic prediction seeks to estimate the full conditional distribution of Y given X. Isotonic Distributional Regression (IDR) is a novel method in this domain, particularly well-suited for scenarios where the relationship between Y and X is isotonic. IDR has received significant attention due to its simplicity, robustness, and hyperparameterfree nature. Another strong point of IDR is its compatibility with the data (calibration). In this talk, we introduce IDR, and we highlight the critical role of calibrated predictions. We conclude by presenting a novel result on the consistency of IDR in the context of a misspecified model. Joint work with S. Allen, A. Henzi and J. Ziegel. pdf
Monday, December 2, 2024 (ΣΕΜΦΕ, at 13:00)
Panagiotis Spanos, Ruhr-Universität Bochum
Τομές τυχαίων υποχώρων
Abstract: Οι τομές τυχαίων γραμμικών ή τυχαίων αφφινικών υποχώρων αποτελούν αντικείμενο μελέτης της Στοχαστικής Γεωμετρίας. Μια ειδική περίπτωση είναι η τομή ενός τυχαίου γραμμικού υποχώρου με έναν τυχαίο αφφινικό υπόχωρο. Εάν υποθέσουμε ότι το άθροισμα των διαστάσεών τους είναι μεγαλύτερο ή ίσο με τη διάσταση του χώρου στον οποίο ορίζονται, τότε αυτοί τέμνονται σχεδόν βέβαια. Σε αυτή την περίπτωση το ενδιαφέρον έγκειται στην κατανομή της τομής τους.
Μετά από μια σύντομη εισαγωγή στην υπερβολική γεωμετρία, θα μεταφέρουμε το πρόβλημα στον υπερβολικό χώρο, όπου εξετάζουμε τομές τυχαίων πλήρως γεωδαισιακών υποχώρων. Σε αυτό το πλαίσιο προκύπτουν νέα φαινόμενα, καθώς η τομή των υποχώρων δεν συμβαίνει σχεδόν βέβαια. Η μελέτη του προβλήματος βασίζεται σε μετασχηματισμούς τύπου Blaschke-Petkantschin και ολοκληρωτική γεωμετρία.
Η ομιλία βασίζεται σε κοινή εργασία με τους E. Sönmez και C. Thäle. pdf
Monday, December 9, 2024 (ΣΕΜΦΕ, at 13:00)
Georgios Kydonakis, University of Patras
Gauge-theoretic gluing techniques over Riemann surfaces
Abstract: Stable holomorphic bundles over a Riemann surface can be realized from a rather analytic perspective seen as solutions to certain Hermite-Einstein equations. More general correspondences of this kind allow one to include classes of augmented principal holomorphic bundles into the study. We will exhibit a set of analytic techniques that can be used in order to obtain solutions of gauge-theoretic equations, thus leading to important models in the moduli spaces of such augmented bundles. These models can provide useful information about the moduli spaces themselves. pdf
Thursday, December 19, 2024 (ΣΕΜΦΕ, at 13:30)
Angeliki Menegaki, Imperial College London
Stability of Rayleigh-Jeans equilibria in the kinetic FPUT equation
Abstract: In this talk we consider the four-waves spatially homogeneous kinetic equation arising in weak wave turbulence theory from the microscopic Fermi-Pasta-Ulam-Tsingou (FPUT) oscillator chains. This equation is sometimes referred to as the Phonon Boltzmann Equation. I will discuss the global existence and stability of solutions of the kinetic equation near the Rayleigh-Jeans (RJ) thermodynamic equilibrium solutions. This is a joint work with Pierre Germain (Imperial College London) and Joonhyun La (KIAS). pdf
Summer School 2024
June 27 - July 3, 2024
"Mathematical Analysis" in honor of Spiros Argyros
Mini courses: Silouanos Brazitikos (University of Crete), Alexandros Eskenazis (Sorbonne Université),Vassilis Gregoriades (National Technical University of Athens), Marina Iliopoulou (National and Kapodistrian University of Athens), Pavlos Motakis (York University).
Invited lectures: George Androulakis (University of South Carolina), Georgios Katsimpas (Harbin Engineering University), Elias Katsoulis (East Carolina University), Sophocles Mercourakis (National and Kapodistrian University of Athens), Mihalis Mourgoglou (University of the Basque Country & Ikerbasque), Dimitrios Ntalampekos (Stony Brook University), Aristotelis Panagiotopoulos (University of Vienna), Yiannis Sakellaridis (Johns Hopkins University), Bunyamin Sari (University of North Texas), Konstantinos Tyros (National and Kapodistrian University of Athens), Petros Valettas (University of Missouri).
Past Talks
Spring 2024
Monday, January 8, 2024 (ΣΕΜΦΕ, at 13:00)
Alexandros Eskenazis, Sorbonne Université and Trinity College, Cambridge
Resilience of cube slicing in ℓ_p
Abstract: We shall discuss the state of the art on the problem of identifying the volume maximizing and minimizing hyperplane sections of p-balls in R^n. After explaining a reduction to a sharp probabilistic estimate on moments of rotationally invariant random vectors, we will present a recent work with P. Nayar (Warsaw) and T. Tkocz (CMU) identifying the volume maximizing section for p greater than a universal constant. pdf
Monday, January 15, 2024 (Zoom)
Myrto Manolaki, University College Dublin
Ολόμορφες συναρτήσεις με χαοτική ακτινική συμπεριφορά
Abstract: Είναι γνωστό ότι οι περισσότερες, με την τοπολογική έννοια, ολόμορφες συναρτήσεις στον μοναδιαίο δίσκο απεικονίζουν κάθε ακτίνα σε ένα πυκνό υποσύνολο του μιγαδικού επιπέδου. Σε αυτή την ομιλία θα επικεντρωθούμε σε μία νέα κλάση ολόμορφων συναρτήσεων που παρουσιάζουν ακόμα πιο χαοτική ακτινική συμπεριφορά. Συγκεκριμένα, για κάθε τέτοια συνάρτηση f, η οικογένεια {f_r(z):=f(rz) : 0<r<1} προσεγγίζει όλες τις συνεχείς συναρτήσεις σε κατάλληλα υποσύνολα του μοναδιαίου κύκλου καθώς το r τείνει στο 1. Θα δούμε πώς οι συναρτήσεις αυτές συνδέονται με κλασικά αποτελέσματα, θα μελετήσουμε την συνοριακή τους συμπεριφορά σε διάφορα χωρία και θα εξετάσουμε πότε παραμένουν αναλλοίωτες ως προς την σύνθεση από αριστερά και δεξιά.
Η ομιλία βασίζεται σε 2 εργασίες με τον Stéphane Charpentier και τον Κωνσταντίνο Μαρονικολάκη. pdf
Monday, February 5, 2024 (Αίθουσα Τηλεδιάσκεψης 1, Κεντρική Βιβλιοθήκη ΕΜΠ at 12:00).
Romanos Diogenes Malikiosis, Aristotle University of Thessaloniki
A linear programming approach to Fuglede's conjecture in Z_p^3
Abstract: Delsarte's method on linear programming bounds is a very powerful tool which provides an upper bound on the size of a set A in an additive group G, whose difference set A-A avoids a given set E. This tool may have limitations, but has been used successfully in various settings, most notably in the sphere packing problem in 8 and 24 dimensions.
Here, we will present an application of this method to Fuglede's conjecture in G=Z_p^3. pdf
Monday, April 1, 2024
Alexandra Tzella, University of Birmingham (ΣΕΜΦΕ, at 15:30)
Diffusion in arrays of obstacles: beyond homogenisation
Abstract: We examine the diffusion of a chemical or heat released in a homogeneous medium interrupted by an infinite number of impermeable obstacles arranged in a periodic lattice. We extend classical results due to Maxwell, Rayleigh and Keller by applying ideas of large-deviation theory to describe the concentration or temperature distribution at large distances from the point of release. We use matched asymptotics to obtain explicit results in the case of nearly touching obstacles, when the transport is strongly inhibited. The technique developed can be applied to complex systems including porous media and composite materials. This is based on joint work with Y. Farah, D. Loghin and J. Vanneste. pdf
Monday, April 8, 2024
Andreas Vikelis, University of Vienna (ΣΕΜΦΕ, at 15:30)
Λύσεις μέτρα για το σύστημα της ελαστοπλαστικότητας σε συνθήκες μεγάλων παραμορφώσεων
Abstract: Μια σειρά από φαινόμενα που συναντάμε στη φύση και πιο συγκεκριμένα στη μηχανική των υλικών, περιγράφονται μέσα από διαφορικές σχέσεις που συχνά είναι πολύ δύσκολο να μελετηθούν λόγω της αυξημένης μαθηματικής τους πολυπλοκότητας. Στη συγκεκριμένη ομιλία θα εστιάσουμε στα εξελικτικά εκείνα φαινόμενα που περιγράφονται από ανεξάρτητα-ρυθμού συστήματα, δηλαδή για παράδειγμα συστήματα που δεν εξαρτώνται από το πόσο γρήγορα ή για πόση διάρκεια εφαρμόζονται σε αυτά εξωτερικές δυνάμεις. Εισάγοντας τις βασικές αρχές της θεωρίας αυτών των συστημάτων και πιο συγκεκριμένα την έννοια των ενεργειακών λύσεων, θα μελετήσουμε το πρόβλημα της εξελικτικής ελαστοπλαστικότητας σε συνθήκες μεγάλων παραμορφώσεων, ένα πρόβλημα που παραμένει μέχρι και σήμερα ανεξερεύνητο. Σε αυτήν την κατεύθυνση, θα παρουσιάσω ένα αποτέλεσμα ύπαρξης λύσεων-μέτρων του quasi-στατικού προβλήματος που διατηρούν τις φυσικές ιδιότητες του συστήματος, δηλαδή είναι ευσταθείς και διατηρούν την ενέργεια. Τόσο η γενικότερη θεωρία των quasi-στατικών εξελικτικών προβλημάτων, όσο και η δική μας συνεισφορά στο πεδίο αυτό, βασίζεται σε τεχνικές από τη θεωρία μεταβολών. Η δουλειά αυτή είναι σε συνεργασία με τον Ulisse Stefanelli. pdf
Monday, April 15, 2024
Vassili Nestoridis, National and Kapodistrian University of Athens (ΕΚΠΑ, at 15:30, Room Γ21)
Προσέγγιση σε συμπαγή σύνολα συναρτήσεων και όλων των παραγώγων τους
Abstract: Σε θεωρήματα τύπου Mergelyan προσεγγίζουμε ομοιόμορφα σε συμπαγή σύνολα Κ συναρτήσεις από πολυώνυμα, ρητές συναρτήσεις ή συναρτήσεις ολόμορφες σε μεταβαλλόμενα ανοικτά που περιέχουν το Κ. Εμείς αντικαθιστούμε την ομοιόμορφη προσέγγιση στο Κ από την ομοιόμορφη στο Κ προσέγγιση όλων των παραγώγων. Η περίπτωση μιας μιγαδικής μεταβλητής βρίσκεται σε άρθρο των Αρμενιάκου, Κοτσόβολη και Νεστορίδη (arXiv:2006.02389) που δημοσιεύτηκε στο Monatchefte fur Mathematik (2022). Στην παρούσα διάλεξη παρουσιάζονται κάποιες επεκτάσεις στις πολλές μιγαδικές μεταβλητές που βασίζονται σε συνεργασία των P. M. Gauthier και Β. Ν. Νεστορίδη. pdf
Monday, April 22, 2024
Georgios Kotsovolis, Princeton University (ΣΕΜΦΕ, at 16:00)
The infima of binary forms
Abstract: For a binary form P(x,y) of non-zero discriminant and for a two dimensional lattice Λ of volume 1, what is the infimum of the values P attains on the non-trivial vectors of Λ? The spectrum of a binary form P is defined to be the set of these infima as Λ ranges over all unimodular lattices. Understanding this object is a fundamental project in the geometry of numbers and even though the case of n=2 is well understood, much less is known for higher degrees. In 1940, Mordell conjectured that for a binary cubic form P, the spectrum of P has a gap after its maximal value, a statement disproved later by Davenport, who constructed a sequence of infima converging to the top. As for n greater than 3, there has been, to our knowledge, no progress to understanding these spectra. In this talk, we show that for any binary form P, the spectrum of P is an interval, answering the problem for all degrees n. pdf
Monday, May 13, 2024
Marina Iliopoulou, National and Kapodistrian University of Athens (ΣΕΜΦΕ, at 15:30)
On integer distance sets
Abstract: An integer distance set is a set in the Euclidean plane with the property that all pairwise distances between its points are integers. In this talk we will show that any integer distance set contains all but very few of its points on a single line or circle. This helps us address some questions by Erdős. In particular, we deduce that integer distance sets in general position (no 3 points on a line, no 4 points on a circle) are very sparse, and we derive a near-optimal lower bound on the diameter of any non-collinear integer distance set of a given size. Our proof uses existing refinements of the Bombieri-Pila determinant method. This is joint work with Rachel Greenfeld and Sarah Peluse. pdf
Monday, May 20, 2024
Konstantinos Kavvadias, Massachusetts Institute of Technology (ΕΚΠΑ, at 15:30, Room Γ31)
Introduction to Schramm-Loewner Evolution (SLE)
Abstract: The Schramm-Loewner Evolution (SLE_κ) is a one parameter family (κ>0) of curves which connect two boundary points of a simply connected domain. It was introduced by Schramm in 1999 as a candidate to describe the scaling limit of the interfaces that arise in discrete models at criticality from statistical mechanics on planar lattices, such as the loop erased random walk and the percolation model. In my talk, I will discuss about the intuition behind the definition of SLE_κ and I will introduce some of its basic properties obtained during the last twenty years. I will also discuss about some recent results obtained in a series of recent research works. Finally, if time permits, I will discuss about some ongoing research results. pdf
Wednesday, June 12, 2024 (ΣΕΜΦΕ, at 14:00)
Michail Sarantis, Carnegie Mellon University
On the zeroes of hypergraph independence polynomials
Abstract: We prove that the multivariate independence polynomial of any hypergraph of maximum degree Δ has no zeroes on the complex polydisc of radius ~1/(eΔ), centered at the origin. Up to logarithmic factors in Δ, the result is optimal, even for graphs with all edge sizes greater than 2. As a corollary, we get an FPTAS for approximating the independence polynomial in this region of the complex plane. We furthermore prove the corresponding radius for the k-uniform linear hypertrees is Ω(Δ^{-1/(k-1)}), a significant discrepancy from the graph case.
Joint work with David Galvin, Gwen McKinley, Will Perkins and Prasad Tetali. pdf
Monday, June 17, 2024 (ΣΕΜΦΕ, at 13:00)
Alexandra Stavrianidi, Stanford University
The logarithmic correction for the fronts of a cascading family of Branching Brownian Motions
Abstract: In this talk, I will introduce the connection between some systems of Fisher-KPP type reaction-diffusion equations and a cascading family of Branching Brownian Motions. The location of the median of the rightmost particle of this particle system coincides with the location of the front of the equations, so the associated long time asymptotics can be studied from both a probability and a PDE point of view. I will present results on the long time behavior of the system and analyze interesting applications and probabilistic connections. pdf
Tuesday, June 25, 2024 (ΣΕΜΦΕ, at 13:00)
Antonios Zitridis, University of Chicago
From entropic propagation of chaos to concentration bounds for stochastic particle systems
Abstract: We shall discuss about weakly interacting stochastic particle systems with possibly singular pairwise interactions. In this setting, we observe a connection between entropic propagation of chaos (proved by Jabin and Wang, 2018) and exponential concentration bounds for the empirical measure of the system. In particular, we will show how to establish a variational upper bound for the probability of a certain rare event, and then use this upper bound to show that ''controlled" entropic propagation of chaos implies an exponential concentration bound for the empirical measure.
Joint work with Joe Jackson. pdf
Fall 2023
Monday, September 11, 2023 (ΣΕΜΦΕ, at 13:00)
Lampros Gavalakis, Université Gustave Eiffel
Discrete entropy monotonicity for log-concave sums on Z and Z^d
Abstract: A celebrated result of Artstein, Ball, Barthe and Naor (2004) states that the differential entropy of sums of continuous random variables increases along the central limit theorem. Although an exact analogue of this statement cannot be true for discrete random variables, Tao (2010) conjectured that an approximate version is true provided that the underlying entropies are large enough. We will present a recent proof of a special case of this conjecture for log-concave random variables on the integers and discuss current progress towards extending this result on Z^d. For the dimensional extension, we will mention some discrete analogues of results from convex analysis that may be of independent interest.
Part of the talk is based on joint work with M. Fradelizi and M. Rapaport. pdf
Monday, September 25, 2023 (ΕΚΠΑ, at 13:00)
Athanasios Zacharopoulos, Universidad del País Vasco
Varopoulos' extensions in domains with Ahlfors-regular boundaries
Abstract: In this talk we shall describe the construction of Varopoulos' type extensions of L^p and BMO boundary functions in rough domains. That is, smooth extensions of functions such that the L^p-norms of their non-tangential maximal function and the Carleson functional of their gradients can be controlled by the norm of the boundary data. After giving the geometric motivation and a brief survey of known results, we will proceed to present a new and more general approach of constructing Varopoulos' extensions in domains with minor geometrical assumptions for the boundaries.
This talk is based on joint work with Mihalis Mourgoglou. pdf
Friday, October 6, 2023 (ΣΕΜΦΕ, at 13:00)
Marianna Chatzakou, Ghent University
Συναρτησιακές ανισότητες σε ομάδες Lie
Abstract: Η ομιλία αφορά σε μια σειρά γνωστών, στον Ευκλείδειο χώρο, κατά βάση λογαριθμικών ανισοτήτων σε ομάδες Lie. Συγκεκριμένα, θα αναφερθούμε στην επέκταση αυτών των ανισοτήτων σε ομάδες Carnot, και κάποιες φορές σε πιο ευρείες κλάσεις ομάδων Lie. Ιδιαίτερη έμφαση θα δοθεί στο πώς το "φυσικό" ανάλογο της κλασσικής λογαριθμικής ανισότητας με Gaussian μέτρο (L. Gross, 1975) εμφανίζεται στην περίπτωση των ομάδων Carnot, και συγκεκριμένα στην ομάδα Heisenberg. Στην τελευταία αυτή περίπτωση, το εμφανιζόμενο μέτρο επιτρέπει να θεωρήσουμε ένα απειροδιάστατο ανάλογο της ομάδας Heisenberg όταν αυτή εφοδιαστεί με το προβλεπόμενο μέτρο πιθανότητας.
Η ομιλία βασίζεται σε κοινές εργασίες με τους A. Kassymov και M. Ruzhansky. pdf
Wednesday, October 11, 2023 (ΣΕΜΦΕ, at 13:00)
Alexandros Saplaouras, National Technical University of Athens
Towards the stability property of 2BSDE and of associated HJB PIDEs
Abstract: In this talk we will deal with the probabilistic representation of viscosity solutions of integro-partial differential equations of Hamilton-Jacobi-Bellman type. We will make a pause to describe the comparison principle suitable for the required generality. Afterwards, we will explain how the stability property of 2BSDEs will enable us to obtain a Trotter-Kato type theorem. pdf
Friday, November 3, 2023 (ΕΚΠΑ, at 13:00)
Dimitrios Chatzakos, University of Patras
The Prime geodesic theorem in arithmetic progressions
Abstract: The Prime geodesic theorem states that the distribution of the lengths of primitive closed geodesics on Riemann surfaces has a similar asymptotic behaviour with the distribution of prime numbers.
In this talk we will discuss an analogue of Dirichlet's theorem in arithmetic progressions for the lengths of primitive closed geodesics on the modular surface. In particular, we prove two conjectures of Golovchanskii and Smotrov from 1999.
This is a joint work with Gergely Harcos and Ikuya Kaneko. pdf
Monday, November 6, 2023 (ΣΕΜΦΕ, at 13:00)
Georgios Moschidis, École Polytechnique Fédérale de Lausanne
Τυρβώδης συμπεριφορά βαρυτικών διαταραχών στο εξωτερικό μελανών οπών
Abstract: Σύμφωνα με την θεωρία της γενικής σχετικότητας, η εξέλιξη των βαρυτικών κυμάτων στον χωροχρόνο διέπεται από ένα σύστημα εξισώσεων υπερβολικού χαρακτήρα, γνωστών και ως εξισώσεις του Einstein. Σε περιπτώσεις όπου τα βαρυτικά κύματα παγιδεύονται στο εσωτερικό ενός πεπερασμένου χωρίου με ανακλαστικό σύνορο, αναμένεται ότι η μη γραμμική φύση των εξισώσεων Einstein οδηγεί στην εμφάνιση τυρβωδών φαινομένων (ανάλογων με αυτά που συναντά κανείς στην ροή ρευστών σωμάτων). Ένα ενδιαφέρον ερώτημα που προκύπτει είναι εάν αντίστοιχα φαινόμενα εμφανίζονται και σε περιπτώσεις διαταραχών μελανών οπών με ασυμπτωτική γεωμετρία που προσομοιάζει αυτή του χώρου Anti de Sitter (και η οποία μπορεί να λειτουργήσει σαν ένα ιδεατό ανακλαστικό σύνορο στο "άπειρο"), καθιστώντας την μελανή οπή "ασταθή". Σε αυτήν την ομιλία, θα εξετάσουμε την τυρβώδη συμπεριφορά των λύσεων μιας μη γραμμικής κυματικής εξίσωσης (έχουσας τον ρόλο απλοποιημένου μοντέλου του συστήματος εξισώσεων Einstein) στο εξωτερικό τέτοιων μελανών οπών. Τα αποτελέσματα αυτά προέκυψαν σε συνεργασία με τον Christoph Kehle. pdf
Monday, November 13, 2023 (ΕΚΠΑ, at 13:00)
Polyxeni Spilioti, University of Göttingen
Twisted Ruelle zeta function on locally symmetric spaces, the Fried’s conjecture and further applications
Abstract: In this talk, we will present some recent results concerning with the special values of the dynamical zeta functions on locally symmetric spaces. In particular, we study the twisted Ruelle zeta function at zero and its relationship with spectral and topological invariants. These results can be viewed as extensions of previous results by Fried to the case of an arbitrary representation. Our techniques are based on the spectral theory of non-self-adjoint Laplacians and the Selberg trace formula. The results are part of joint work with Jan Frahm, Léo Bénard and Jan Frahm, and Frédéric Naud. pdf
Monday, November 20, 2023 (ΣΕΜΦΕ, at 13:00)
Odysseas Bakas, University of Patras
Endpoint bounds for certain classes of operators arising in Littlewood-Paley theory
Abstract: In the first part of this talk we shall review certain aspects of classical Littlewood-Paley theory and briefly present some open problems in the area. Motivated in part by these problems, in the second part of talk, we will present joint work with Valentina Ciccone, Ioannis Parissis, and Marco Vitturi concerning sharp endpoint bounds for certain classes of operators arising in Littlewood-Paley theory, including Littlewood-Paley square functions and Marcinkiewicz multiplier operators of finite order. pdf
Monday, December 4, 2023 (ΣΕΜΦΕ, at 13:00)
Vagia Vlachou, University of Patras
Disjoint universality connected with differential operators
Abstract: For a simply connected domain G, we study the problem of disjoint universality for series of operators connected with differential operators and polynomials. The motivation for this study stems from Universal Taylor Series, if you change the role of the centre of expansion to variable instead of constant. pdf
Monday, December 11, 2023 (ΣΕΜΦΕ, at 13:00)
Michael Roysdon, Case Western Reserve University
Higher-order convex bodies and related inequalities
Abstract: I will discuss parts of a series of joint works with J. Haddad, D. Langharst, E. Putterman, and D. Ye, which concern the examination of classical notions of convex geometry in a "higher-order" setting. To a convex body K operators may be assigned, such as the difference body, projection body, and centroid body operators. In this talk, I will describe methods of assigning to a convex body K in R^n convex bodies in dimension R^{nm} which extend the usual notion of difference body, projection body and centroid bodies. As a consequence, various affine-isoperimetric inequalities and Sobolev-type inequalities, one of which is stronger than the usual isoperimetric inequality, arise in this setting. Since this topic is completely new in the subject, there are still many open questions to consider concerning these new operators. pdf
Monday, December 18, 2023 (ΣΕΜΦΕ, at 13:00)
Christoforos Panagiotis, University of Bath
Quantitative sub-ballisticity of self-avoiding walk on the hexagonal lattice
Abstract: In this talk, we will consider the self-avoiding walk on the hexagonal lattice, which is one of the few lattices whose connective constant can be computed explicitly. This was proved by Duminil-Copin and Smirnov in 2012 when they introduced the parafermionic observable. In this talk, we will use the observable to show that, with high probability, a self-avoiding walk of length n does not exit a ball of radius n/logn. This improves on an earlier result of Duminil-Copin and Hammond, who obtained a non-quantitative o(n) bound. Along the way, we show that at criticality, the partition function of bridges of height T decays polynomially fast to 0. Joint work with Dmitrii Krachun. pdf
Wednesday, December 20, 2023 (ΕΚΠΑ, at 15:00)
Dimitris Gerontogiannis, Leiden University
The logarithmic Dirichlet Laplacian on Ahlfors regular spaces
Abstract: The Laplace-Beltrami operator is a fundamental tool in the study of compact Riemannian manifolds. In this talk, I will introduce the logarithmic analogue of this operator on Ahlfors regular spaces. These are metric-measure spaces that might lack any differential or algebraic structure. Examples are compact Riemannian manifolds, several fractals, self-similar Smale spaces and limit sets of hyperbolic isometry groups. Further, this new operator is intrinsically defined, its spectral properties are analogous to those of elliptic pseudo-differential operators on manifolds and exhibits compatibility with non-isometric actions in the sense of noncommutative geometry. This is joint work with Bram Mesland (Leiden). pdf
Spring 2023
Monday, April 24, 2023
Giorgos Chasapis, University of Crete
Sharp moment comparison for sums of rotationally invariant random vectors and geometric applications
Abstract: pdf
Monday, May 8, 2023
Andreas Koutsogiannis, Aristotle University of Thessaloniki
Convergence of multiple ergodic averages for totally ergodic systems
Abstract: A collection of integer sequences is jointly ergodic if for every ergodic measure preserving system the multiple ergodic averages, with iterates given by the sequences, converge to “the expected limit” in the mean, i.e., the product of the integrals. Exploiting a recent approach of Frantzikinakis, which allows one to avoid deep tools from ergodic theory that were previously used to establish similar results, we study joint ergodicity in totally ergodic systems for integer parts of suitable iterates. The motivation for this study, which is joint work with Wenbo Sun (Virginia Tech), comes from previous work with Dimitris Karageorgos. pdf
Monday, May 15, 2023
Marios Georgios Stamatakis, University of Ioannina
Generalized Young measures for the hydrodynamic limit of condensing zero-range processes
Abstract: Zero-range processes are stochastic interacting particle systems with zero range interaction. For particular choices of their parameters they exhibit phase separation with the emergence of a condensate. Such zero-range processes are referred to as condensing and their hydrodynamic limit is not known. It is expected to be given by a degenerate non-linear diffusion equation where the diffusivity vanishes at densities that exceed a critical density ρ_c. In this talk we employ an appropriate generalization of the notion of Young-measures in order to obtain the hydrodynamic limit of such equations. pdf
Monday, May 29, 2023
Konstantinos Zemas, Universität Münster
Rigidity estimates for isometric and conformal maps on the sphere
Abstract: In this talk I would like to discuss stability aspects of the class of rigid motions, resp. Möbius transformations, among Sobolev maps from the standard round sphere into the ambient Euclidean space. Unlike similar in flavour results for maps defined on domains, not only an isometric, resp. conformal, deficit is necessary in this more flexible setting, but also a deficit measuring the distortion of the sphere under the maps in consideration. The latter is defined as an associated isoperimetric type of deficit. The focus will mostly be on the case when the ambient dimension is 3, and we will also explain why, in both cases, the estimates are optimal in their corresponding settings. The adaptations needed in higher dimensions and the particular case of sphere-valued maps will also be addressed. The talk will be based on previous works with Stephan Luckhaus and Jonas Hirsch, and an ongoing one with Xavier Lamy and Andre Guerra. pdf
Wednesday, June 7, 2023
Georgios Sakellaris, Aristotle University of Thessaloniki
Το πρόβλημα του Neumann για δευτεροβάθμιες ελλειπτικές εξισώσεις με όρους χαμηλότερης τάξης
Abstract: pdf
June 19 - June 23, 2023
There is a summer school at the Department of Mathematics:
"Mathematics of Machine and Statistical Learning"
Speakers: Constantine Caramanis (University of Texas, Austin, USA), Daniele Durante (Universitá Bocconi, Milano, Italy), Panayotis Mertikopoulos (National & Kapodistrian University of Athens), Konstantinos Spiliopoulos (Boston University, USA)
June 26 - June 30, 2023
There is a summer school at the Department of Mathematics:
“Mathematical Theory of Inverse Problems and Applications”
Speakers: Guillaume Bal (University of Chicago), Marc Bonnet (ENSTA, Paris), Fioralba Cakoni (Rutgers University), Andreas Kirsch (Karlsruhe Institute of Technology), Mourad Sini (Ricam, Linz).
July 10 - July 15, 2023
There is a summer school at the Department of Mathematics:
"Ninth Summer School in Operator Theory"
Speakers: A. Chatzinikolaou (NKUA), D. Drivaliaris (University of the Aegean), M. Ghandehari (University of Delaware), A. Giannopoulos (NTUA), V. Kanellopoulos (NTUA), A. Katavolos (NKUA), E. G. Katsoulis (East Carolina University), I. G. Todorov (University of Delaware), N. Yannakakis (NTUA).