I work as an assistant professor at the Faculty of Applied Sciences, University of West Bohemia. Before that I was a postdoctoral researcher at the Faculty of Informatics, Masaryk University, working with Dan Kráľ. Before before that I was a researcher and a Ph.D. student at the University of West Bohemia, my studies were advised by Tomáš Kaiser.

You can reach me at kabela[at]kma.zcu.cz.

I am interested in Structural Graph Theory. The results of my research can be found listed below.

Papers


  • C. Brause, T. D. Doan, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: Forbidden induced subgraphs and perfectness for claw-free graphs of independence at least 4, arXiv.

  • J. W. Cooper, A. Kabela, D. Král', T. Pierron: Hadwiger meets Cayley, arXiv.

  • P. Candela, C. Catalá, R. Hancock, A. Kabela, D. Kráľ, A. Lamaison, L. Vena: Coloring graphs by translates in the circle, arXiv.

  • A. Kabela, J. Teska: Trestles in the squares of graphs, arXiv.

  • R. Hancock, A. Kabela, D. Kráľ, T. Martins, R. Parente, F. Skerman, J. Volec: No additional tournaments are quasirandom-forcing, arXiv.

  • J. W. Cooper, A. Grzesik, A. Kabela, D. Kráľ: Packing and covering directed triangles asymptotically, arXiv.

  • A. Kabela, P. Vrána: Equivalent formulation of Thomassen's conjecture using Tutte paths in claw-free graphs, arXiv.

  • C. Brause, P. Holub, A. Kabela, Z. Ryjáček, I. Schiermeyer, P. Vrána: On forbidden induced subgraphs for K_{1,3}-free perfect graphs, Discrete Mathematics (2019) and arXiv.

  • A. Kabela: Long paths and toughness of k-trees and chordal planar graphs, Discrete Mathematics (2019) and arXiv .

  • Z. Dvořák, A. Kabela, T. Kaiser: Planar graphs have two-coloring number at most 8, Journal of Combinatorial Theory, Series B (2018) and arXiv.

  • J. Ekstein, S. Fujita, A. Kabela, J. Teska: Bounding the distance among longest paths in a connected graph, Discrete Mathematics (2018) and arXiv .

  • A. Kabela: An update on non-Hamiltonian 5/4-tough maximal planar graphs, Discrete Mathematics (2018) and arXiv.

  • A. Kabela, T. Kaiser: 10-tough chordal graphs are Hamiltonian, Journal of Combinatorial Theory, Series B (2017) and arXiv.

Talks