Visit This Web URL https://masterytrail.com/product/accredited-expert-level-ibm-dataops-mastery-badge-advanced-video-course Lesson 1: Introduction to DataOps

1.1. Definition and Importance of DataOps

1.2. History and Evolution of DataOps

1.3. Key Components of DataOps

1.4. DataOps vs. DevOps

1.5. Benefits of Implementing DataOps

1.6. DataOps in the Enterprise

1.7. DataOps Tools and Technologies

1.8. DataOps Best Practices

1.9. DataOps Case Studies

1.10. Setting Up Your DataOps Environment


Lesson 2: DataOps Principles and Frameworks

2.1. Agile Methodologies in DataOps

2.2. Lean Principles in DataOps

2.3. Continuous Integration and Continuous Deployment (CI/CD)

2.4. DataOps Frameworks Overview

2.5. IBM DataOps Framework

2.6. DataOps Maturity Model

2.7. DataOps Governance

2.8. DataOps Security

2.9. DataOps Compliance

2.10. DataOps Metrics and KPIs


Lesson 3: DataOps Architecture

3.1. DataOps Architecture Overview

3.2. Data Ingestion and Storage

3.3. Data Processing and Transformation

3.4. Data Quality and Validation

3.5. Data Governance and Metadata Management

3.6. DataOps Pipelines

3.7. DataOps Orchestration

3.8. DataOps Monitoring and Logging

3.9. DataOps Scalability

3.10. DataOps Resilience and Recovery


Lesson 4: IBM DataOps Tools and Platforms

4.1. IBM Cloud Pak for Data

4.2. IBM Watson Studio

4.3. IBM DataStage

4.4. IBM InfoSphere Information Server

4.5. IBM Db2 Warehouse

4.6. IBM Data Virtualization

4.7. IBM Data Governance Catalog

4.8. IBM Data Risk Manager

4.9. IBM OpenPages

4.10. Integrating IBM DataOps Tools


Lesson 5: DataOps Data Management

5.1. Data Ingestion Techniques

5.2. Data Storage Solutions

5.3. Data Processing Frameworks

5.4. Data Transformation Pipelines

5.5. Data Quality Assurance

5.6. Data Validation and Testing

5.7. Data Lineage and Traceability

5.8. Data Cataloging and Metadata Management

5.9. Data Governance Policies

5.10. Data Compliance and Regulations


Lesson 6: DataOps Automation

6.1. Automating Data Ingestion

6.2. Automating Data Processing

6.3. Automating Data Quality Checks

6.4. Automating Data Validation

6.5. Automating Data Governance

6.6. Automating DataOps Pipelines

6.7. Automating DataOps Orchestration

6.8. Automating DataOps Monitoring

6.9. Automating DataOps Alerts and Notifications

6.10. Automating DataOps Reporting


Lesson 7: DataOps Security and Compliance

7.1. Data Security Best Practices

7.2. Data Encryption Techniques

7.3. Access Control and Authentication

7.4. Data Masking and Anonymization

7.5. Compliance with Data Regulations (GDPR, CCPA)

7.6. DataOps Audit and Logging

7.7. DataOps Incident Response

7.8. DataOps Risk Management

7.9. DataOps Compliance Reporting

7.10. DataOps Security Tools and Technologies


Lesson 8: DataOps Monitoring and Observability

8.1. Monitoring DataOps Pipelines

8.2. Monitoring Data Quality

8.3. Monitoring Data Performance

8.4. Monitoring DataOps Infrastructure

8.5. Observability in DataOps

8.6. DataOps Dashboards and Visualizations

8.7. DataOps Alerts and Notifications

8.8. DataOps Logging and Auditing

8.9. DataOps Anomaly Detection

8.10. DataOps Performance Tuning


Lesson 9: DataOps Collaboration and Communication

9.1. Collaboration Tools for DataOps

9.2. Communication Best Practices in DataOps

9.3. DataOps Team Roles and Responsibilities

9.4. DataOps Project Management

9.5. DataOps Documentation

9.6. DataOps Knowledge Sharing

9.7. DataOps Training and Onboarding

9.8. DataOps Stakeholder Management

9.9. DataOps Feedback Loops

9.10. DataOps Continuous Improvement


Lesson 10: DataOps Case Studies and Best Practices

10.1. Case Study: Financial Services

10.2. Case Study: Healthcare

10.3. Case Study: Retail

10.4. Case Study: Manufacturing

10.5. Best Practices for DataOps Implementation

10.6. Best Practices for DataOps Automation

10.7. Best Practices for DataOps Security

10.8. Best Practices for DataOps Monitoring

10.9. Best Practices for DataOps Collaboration

10.10. Best Practices for DataOps Governance


Lesson 11: Advanced DataOps Techniques

11.1. Advanced Data Ingestion Techniques

11.2. Advanced Data Processing Techniques

11.3. Advanced Data Quality Assurance

11.4. Advanced Data Validation Techniques

11.5. Advanced Data Governance Techniques

11.6. Advanced DataOps Automation

11.7. Advanced DataOps Monitoring

11.8. Advanced DataOps Security

11.9. Advanced DataOps Collaboration

11.10. Advanced DataOps Compliance


Lesson 12: DataOps for Machine Learning

12.1. DataOps for ML Pipelines

12.2. DataOps for ML Model Training

12.3. DataOps for ML Model Deployment

12.4. DataOps for ML Model Monitoring

12.5. DataOps for ML Model Governance

12.6. DataOps for ML Model Security

12.7. DataOps for ML Model Compliance

12.8. DataOps for ML Model Collaboration

12.9. DataOps for ML Model Documentation

12.10. DataOps for ML Model Continuous Improvement


Lesson 13: DataOps for Big Data

13.1. DataOps for Big Data Ingestion

13.2. DataOps for Big Data Storage

13.3. DataOps for Big Data Processing

13.4. DataOps for Big Data Quality

13.5. DataOps for Big Data Governance

13.6. DataOps for Big Data Security

13.7. DataOps for Big Data Compliance

13.8. DataOps for Big Data Monitoring

13.9. DataOps for Big Data Collaboration

13.10. DataOps for Big Data Continuous Improvement


Lesson 14: DataOps for Real-Time Analytics

14.1. DataOps for Real-Time Data Ingestion

14.2. DataOps for Real-Time Data Processing

14.3. DataOps for Real-Time Data Quality

14.4. DataOps for Real-Time Data Governance

14.5. DataOps for Real-Time Data Security

14.6. DataOps for Real-Time Data Compliance

14.7. DataOps for Real-Time Data Monitoring

14.8. DataOps for Real-Time Data Collaboration

14.9. DataOps for Real-Time Data Documentation

14.10. DataOps for Real-Time Data Continuous Improvement


Lesson 15: DataOps for Cloud Environments

15.1. DataOps for Cloud Data Ingestion

15.2. DataOps for Cloud Data Storage

15.3. DataOps for Cloud Data Processing

15.4. DataOps for Cloud Data Quality

15.5. DataOps for Cloud Data Governance

15.6. DataOps for Cloud Data Security

15.7. DataOps for Cloud Data Compliance

15.8. DataOps for Cloud Data Monitoring

15.9. DataOps for Cloud Data Collaboration

15.10. DataOps for Cloud Data Continuous Improvement


Lesson 16: DataOps for Hybrid Environments

16.1. DataOps for Hybrid Data Ingestion

16.2. DataOps for Hybrid Data Storage

16.3. DataOps for Hybrid Data Processing

16.4. DataOps for Hybrid Data Quality

16.5. DataOps for Hybrid Data Governance

16.6. DataOps for Hybrid Data Security

16.7. DataOps for Hybrid Data Compliance

16.8. DataOps for Hybrid Data Monitoring

16.9. DataOps for Hybrid Data Collaboration

16.10. DataOps for Hybrid Data Continuous Improvement


Lesson 17: DataOps for Multi-Cloud Environments

17.1. DataOps for Multi-Cloud Data Ingestion

17.2. DataOps for Multi-Cloud Data Storage

17.3. DataOps for Multi-Cloud Data Processing

17.4. DataOps for Multi-Cloud Data Quality

17.5. DataOps for Multi-Cloud Data Governance

17.6. DataOps for Multi-Cloud Data Security

17.7. DataOps for Multi-Cloud Data Compliance

17.8. DataOps for Multi-Cloud Data Monitoring

17.9. DataOps for Multi-Cloud Data Collaboration

17.10. DataOps for Multi-Cloud Data Continuous Improvement


Lesson 18: DataOps for Edge Computing

18.1. DataOps for Edge Data Ingestion

18.2. DataOps for Edge Data Storage

18.3. DataOps for Edge Data Processing

18.4. DataOps for Edge Data Quality

18.5. DataOps for Edge Data Governance

18.6. DataOps for Edge Data Security

18.7. DataOps for Edge Data Compliance

18.8. DataOps for Edge Data Monitoring

18.9. DataOps for Edge Data Collaboration

18.10. DataOps for Edge Data Continuous Improvement


Lesson 19: DataOps for IoT

19.1. DataOps for IoT Data Ingestion

19.2. DataOps for IoT Data Storage

19.3. DataOps for IoT Data Processing

19.4. DataOps for IoT Data Quality

19.5. DataOps for IoT Data Governance

19.6. DataOps for IoT Data Security

19.7. DataOps for IoT Data Compliance

19.8. DataOps for IoT Data Monitoring

19.9. DataOps for IoT Data Collaboration

19.10. DataOps for IoT Data Continuous Improvement


Lesson 20: DataOps for Data Lakes

20.1. DataOps for Data Lake Ingestion

20.2. DataOps for Data Lake Storage

20.3. DataOps for Data Lake Processing

20.4. DataOps for Data Lake Quality

20.5. DataOps for Data Lake Governance

20.6. DataOps for Data Lake Security

20.7. DataOps for Data Lake Compliance

20.8. DataOps for Data Lake Monitoring

20.9. DataOps for Data Lake Collaboration

20.10. DataOps for Data Lake Continuous Improvement


Lesson 21: DataOps for Data Warehouses

21.1. DataOps for Data Warehouse Ingestion

21.2. DataOps for Data Warehouse Storage

21.3. DataOps for Data Warehouse Processing

21.4. DataOps for Data Warehouse Quality

21.5. DataOps for Data Warehouse Governance

21.6. DataOps for Data Warehouse Security

21.7. DataOps for Data Warehouse Compliance

21.8. DataOps for Data Warehouse Monitoring

21.9. DataOps for Data Warehouse Collaboration

21.10. DataOps for Data Warehouse Continuous Improvement


Lesson 22: DataOps for Data Marts

22.1. DataOps for Data Mart Ingestion

22.2. DataOps for Data Mart Storage

22.3. DataOps for Data Mart Processing

22.4. DataOps for Data Mart Quality

22.5. DataOps for Data Mart Governance

22.6. DataOps for Data Mart Security

22.7. DataOps for Data Mart Compliance

22.8. DataOps for Data Mart Monitoring

22.9. DataOps for Data Mart Collaboration

22.10. DataOps for Data Mart Continuous Improvement


Lesson 23: DataOps for Data Streaming

23.1. DataOps for Data Streaming Ingestion

23.2. DataOps for Data Streaming Storage

23.3. DataOps for Data Streaming Processing

23.4. DataOps for Data Streaming Quality

23.5. DataOps for Data Streaming Governance

23.6. DataOps for Data Streaming Security

23.7. DataOps for Data Streaming Compliance

23.8. DataOps for Data Streaming Monitoring

23.9. DataOps for Data Streaming Collaboration

23.10. DataOps for Data Streaming Continuous Improvement


Lesson 24: DataOps for Data Virtualization

24.1. DataOps for Data Virtualization Ingestion

24.2. DataOps for Data Virtualization Storage

24.3. DataOps for Data Virtualization Processing

24.4. DataOps for Data Virtualization Quality

24.5. DataOps for Data Virtualization Governance

24.6. DataOps for Data Virtualization Security

24.7. DataOps for Data Virtualization Compliance

24.8. DataOps for Data Virtualization Monitoring

24.9. DataOps for Data Virtualization Collaboration

24.10. DataOps for Data Virtualization Continuous Improvement


Lesson 25: DataOps for Data Mesh

25.1. DataOps for Data Mesh Ingestion

25.2. DataOps for Data Mesh Storage

25.3. DataOps for Data Mesh Processing

25.4. DataOps for Data Mesh Quality

25.5. DataOps for Data Mesh Governance

25.6. DataOps for Data Mesh Security

25.7. DataOps for Data Mesh Compliance

25.8. DataOps for Data Mesh Monitoring

25.9. DataOps for Data Mesh Collaboration

25.10. DataOps for Data Mesh Continuous Improvement


Lesson 26: DataOps for Data Fabric

26.1. DataOps for Data Fabric Ingestion

26.2. DataOps for Data Fabric Storage

26.3. DataOps for Data Fabric Processing

26.4. DataOps for Data Fabric Quality

26.5. DataOps for Data Fabric Governance

26.6. DataOps for Data Fabric Security

26.7. DataOps for Data Fabric Compliance

26.8. DataOps for Data Fabric Monitoring

26.9. DataOps for Data Fabric Collaboration

26.10. DataOps for Data Fabric Continuous Improvement


Lesson 27: DataOps for Data Governance

27.1. DataOps for Data Governance Policies

27.2. DataOps for Data Governance Frameworks

27.3. DataOps for Data Governance Tools

27.4. DataOps for Data Governance Best Practices

27.5. DataOps for Data Governance Compliance

27.6. DataOps for Data Governance Security

27.7. DataOps for Data Governance Monitoring

27.8. DataOps for Data Governance Collaboration

27.9. DataOps for Data Governance Documentation

27.10. DataOps for Data Governance Continuous Improvement


Lesson 28: DataOps for Data Quality

28.1. DataOps for Data Quality Assurance

28.2. DataOps for Data Quality Validation

28.3. DataOps for Data Quality Tools

28.4. DataOps for Data Quality Best Practices

28.5. DataOps for Data Quality Compliance

28.6. DataOps for Data Quality Security

28.7. DataOps for Data Quality Monitoring

28.8. DataOps for Data Quality Collaboration

28.9. DataOps for Data Quality Documentation

28.10. DataOps for Data Quality Continuous Improvement


Lesson 29: DataOps for Data Integration

29.1. DataOps for Data Integration Techniques

29.2. DataOps for Data Integration Tools

29.3. DataOps for Data Integration Best Practices

29.4. DataOps for Data Integration Compliance

29.5. DataOps for Data Integration Security

29.6. DataOps for Data Integration Monitoring

29.7. DataOps for Data Integration Collaboration

29.8. DataOps for Data Integration Documentation

29.9. DataOps for Data Integration Continuous Improvement

29.10. DataOps for Data Integration Case Studies


Lesson 30: DataOps for Data Transformation

30.1. DataOps for Data Transformation Techniques

30.2. DataOps for Data Transformation Tools

30.3. DataOps for Data Transformation Best Practices

30.4. DataOps for Data Transformation Compliance

30.5. DataOps for Data Transformation Security

30.6. DataOps for Data Transformation Monitoring

30.7. DataOps for Data Transformation Collaboration

30.8. DataOps for Data Transformation Documentation

30.9. DataOps for Data Transformation Continuous Improvement

30.10. DataOps for Data Transformation Case Studies


Lesson 31: DataOps for Data Analytics

31.1. DataOps for Data Analytics Techniques

31.2. DataOps for Data Analytics Tools

31.3. DataOps for Data Analytics Best Practices

31.4. DataOps for Data Analytics Compliance

31.5. DataOps for Data Analytics Security

31.6. DataOps for Data Analytics Monitoring

31.7. DataOps for Data Analytics Collaboration

31.8. DataOps for Data Analytics Documentation

31.9. DataOps for Data Analytics Continuous Improvement

31.10. DataOps for Data Analytics Case Studies


Lesson 32: DataOps for Data Science

32.1. DataOps for Data Science Techniques

32.2. DataOps for Data Science Tools

32.3. DataOps for Data Science Best Practices

32.4. DataOps for Data Science Compliance

32.5. DataOps for Data Science Security

32.6. DataOps for Data Science Monitoring

32.7. DataOps for Data Science Collaboration

32.8. DataOps for Data Science Documentation

32.9. DataOps for Data Science Continuous Improvement

32.10. DataOps for Data Science Case Studies


Lesson 33: DataOps for AI and ML

33.1. DataOps for AI and ML Techniques

33.2. DataOps for AI and ML Tools

33.3. DataOps for AI and ML Best Practices

33.4. DataOps for AI and ML Compliance

33.5. DataOps for AI and ML Security

33.6. DataOps for AI and ML Monitoring

33.7. DataOps for AI and ML Collaboration

33.8. DataOps for AI and ML Documentation

33.9. DataOps for AI and ML Continuous Improvement

33.10. DataOps for AI and ML Case Studies


Lesson 34: DataOps for Business Intelligence

34.1. DataOps for BI Techniques

34.2. DataOps for BI Tools

34.3. DataOps for BI Best Practices

34.4. DataOps for BI Compliance

34.5. DataOps for BI Security

34.6. DataOps for BI Monitoring

34.7. DataOps for BI Collaboration

34.8. DataOps for BI Documentation

34.9. DataOps for BI Continuous Improvement

34.10. DataOps for BI Case Studies


Lesson 35: DataOps for Reporting and Visualization

35.1. DataOps for Reporting Techniques

35.2. DataOps for Reporting Tools

35.3. DataOps for Reporting Best Practices

35.4. DataOps for Reporting Compliance

35.5. DataOps for Reporting Security

35.6. DataOps for Reporting Monitoring

35.7. DataOps for Reporting Collaboration

35.8. DataOps for Reporting Documentation

35.9. DataOps for Reporting Continuous Improvement

35.10. DataOps for Reporting Case Studies


Lesson 36: DataOps for Compliance and Regulation

36.1. DataOps for Compliance Frameworks

36.2. DataOps for Compliance Tools

36.3. DataOps for Compliance Best Practices

36.4. DataOps for Compliance Security

36.5. DataOps for Compliance Monitoring

36.6. DataOps for Compliance Collaboration

36.7. DataOps for Compliance Documentation

36.8. DataOps for Compliance Continuous Improvement

36.9. DataOps for Compliance Case Studies

36.10. DataOps for Compliance Audits


Lesson 37: DataOps for Risk Management

37.1. DataOps for Risk Management Frameworks

37.2. DataOps for Risk Management Tools

37.3. DataOps for Risk Management Best Practices

37.4. DataOps for Risk Management Compliance

37.5. DataOps for Risk Management Security

37.6. DataOps for Risk Management Monitoring

37.7. DataOps for Risk Management Collaboration

37.8. DataOps for Risk Management Documentation

37.9. DataOps for Risk Management Continuous Improvement

37.10. DataOps for Risk Management Case Studies


Lesson 38: DataOps for Incident Response

38.1. DataOps for Incident Response Frameworks

38.2. DataOps for Incident Response Tools

38.3. DataOps for Incident Response Best Practices

38.4. DataOps for Incident Response Compliance

38.5. DataOps for Incident Response Security

38.6. DataOps for Incident Response Monitoring

38.7. DataOps for Incident Response Collaboration

38.8. DataOps for Incident Response Documentation

38.9. DataOps for Incident Response Continuous Improvement

38.10. DataOps for Incident Response Case Studies


Lesson 39: DataOps for Continuous Improvement

39.1. DataOps for Continuous Improvement Frameworks

39.2. DataOps for Continuous Improvement Tools

39.3. DataOps for Continuous Improvement Best Practices

39.4. DataOps for Continuous Improvement Compliance

39.5. DataOps for Continuous Improvement Security

39.6. DataOps for Continuous Improvement Monitoring

39.7. DataOps for Continuous Improvement Collaboration

39.8. DataOps for Continuous Improvement Documentation

39.9. DataOps for Continuous Improvement Metrics

39.10. DataOps for Continuous Improvement Case Studies


Lesson 40: DataOps Certification and Expertise

40.1. Preparing for IBM DataOps Certification

40.2. IBM DataOps Certification Exam Overview

40.3. IBM DataOps Certification Study Guide

40.4. IBM DataOps Certification Practice Exams

40.5. IBM DataOps Certification Exam Tips

40.6. IBM DataOps Certification Renewal

40.7. IBM DataOps Certification Benefits

40.8. IBM DataOps Certification Career Paths

40.9. IBM DataOps Certification Community and Resources

40.10. IBM DataOps Certification Success StoriesÂ