Last update: January 15, 2022. Updates will occur every 3 months.
This is a list of novel methods for predicting energy expenditure of activity intensity that have been developed but are not yet included in the repository because the model/code/etc. was not linked to the original published paper.
If you want to be included in the repository or have a suggestion for a model to be included, please contact us!
Albinali, F., Intille, S., Haskell, W., & Rosenberger, M. (2010). Using wearable activity type detection to improve physical activity energy expenditure estimation. Proceedings of the 12th ACM International Conference on Ubiquitous Computing.
Altini, M., Casale, P., Penders, J., & Amft, O. (2015). Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models. Journal of Biomedical Informatics, 56, 195-204.
Altini, M., Casale, P., Penders, J. F., & Amft, O. (2015). Personalization of energy expenditure estimation in free living using topic models. IEEE Journal of Biomedical and Health Informatics, 19(5), 1577-1586.
Altini, M., Penders, J., & Amft, O. (2012). Energy expenditure estimation using wearable sensors: A new methodology for activity-specific models. Proceedings of the Conference on Wireless Health.
Altini, M., Penders, J., & Amft, O. (2013). Body weight-normalized energy expenditure estimation using combined activity and allometric scaling clustering. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Altini, M., Penders, J., & Amft, O. (2013). Personalizing energy expenditure estimation using a cardiorespiratory fitness predicate. 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops.
Altini, M., Penders, J., & Amft, O. (2015). Estimating oxygen uptake during nonsteady-state activities and transitions using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 20(2), 469-475.
Altini, M., Penders, J., Vullers, R., & Amft, O. (2013). Combining wearable accelerometer and physiological data for activity and energy expenditure estimation. Proceedings of the 4th Conference on Wireless Health.
Altini, M., Penders, J., Vullers, R., & Amft, O. (2014). Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. IEEE Journal of Biomedical and Health Informatics, 19(1), 219-226.
Altini, M., Penders, J., Vullers, R., & Amft, O. (2014). Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living. Physiological Measurement, 35(9), 1797.
Amaral, K. M., Chen, P., Crouter, S., & Ding, W. (2017). Bag-of-words method applied to accelerometer measurements for the purpose of classification and energy estimation. arXiv preprint arXiv:1704.01574.
Anastasopoulou, P., Tansella, M., Stumpp, J., Shammas, L., & Hey, S. (2012). Classification of human physical activity and energy expenditure estimation by accelerometry and barometry. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Atallah, L., Leong, J., Lo, B., & Yang, G.-Z. (2011). Energy expenditure prediction using a miniaturized ear-worn sensor. Medicine and Science in Sports and Exercise, 43(7), 1369-1377.
Bai, C., Wanigatunga, A. A., Saldana, S., Casanova, R., Manini, T. M., & Mardini, M. T. (2022). Are machine learning models on wrist accelerometry robust against differences in physical performance among older adults?. Sensors, 22(8), 3061.
Beltrame, T., Amelard, R., Wong, A., & Hughson, R. L. (2017). Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Scientific Reports, 7(1), 1-8.
Bonomi, A. G., Plasqui, G., Goris, A. H., & Westerterp, K. R. (2009). Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. Journal of Applied Physiology, 107(3), 655-661.
Bouarfa, L., Atallah, L., Kwasnicki, R. M., Pettitt, C., Frost, G., & Yang, G.-Z. (2013). Predicting free-living energy expenditure using a miniaturized ear-worn sensor: An evaluation against doubly labeled water. IEEE Transactions on Biomedical Engineering, 61(2), 566-575.
Bourke, A. K., Massé, F., Arami, A., Aminian, K., Healy, M., Nelson, J., ODwyer, C., & Coote, S. (2014). Energy expenditure estimation using accelerometry and heart rate for multiple sclerosis and healthy older adults. 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops.
Carneiro, S., Silva, J., Aguiar, B., Rocha, T., Sousa, I., Montanha, T., & Ribeiro, J. (2015). Accelerometer-based methods for energy expenditure using the smartphone. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings.
Catal, C., & Akbulut, A. (2018). Automatic energy expenditure measurement for health science. Computer Methods and Programs in Biomedicine, 157, 31-37.
Chen, K. Y., Acra, S. A., Majchrzak, K., Donahue, C. L., Baker, L., Clemens, L., Sun, M., & Buchowski, M. S. (2003). Predicting energy expenditure of physical activity using hip-and wrist-worn accelerometers. Diabetes Technology & Therapeutics, 5(6), 1023-1033.
Chen, S., Lach, J., Amft, O., Altini, M., & Penders, J. (2013). Unsupervised activity clustering to estimate energy expenditure with a single body sensor. 2013 IEEE International Conference on Body Sensor Networks.
Choi, J. H., Lee, J., Hwang, H. T., Kim, J. P., Park, J. C., & Shin, K. (2006). Estimation of activity energy expenditure: accelerometer approach. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,
Chowdhury, A. K., Tjondronegoro, D., Zhang, J., Hagenbuchner, M., Cliff, D., & Trost, S. G. (2018). Deep learning for energy expenditure prediction in pre-school children. IEEE Conference on Biomedical and Health Informatics.
Cvetković, B., Milić, R., & Luštrek, M. (2015). Estimating energy expenditure with multiple models using different wearable sensors. IEEE Journal of Biomedical and Health Informatics, 20(4), 1081-1087.
Cvetković, B., Szeklicki, R., Janko, V., Lutomski, P., & Luštrek, M. (2018). Real-time activity monitoring with a wristband and a smartphone. Information Fusion, 43, 77-93.
De Bois, M., Amroun, H., & Ammi, M. (2018). Energy expenditure estimation through daily activity recognition using a smart-phone. 2018 IEEE 4th World Forum on Internet of Things.
Delgado-Gonzalo, R., Celka, P., Renevey, P., Dasen, S., Solà, J., Bertschi, M., & Lemay, M. (2015). Physical activity profiling: activity-specific step counting and energy expenditure models using 3D wrist acceleration. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Dong, B., Biswas, S., Montoye, A., & Pfeiffer, K. (2013). Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Dong, B., Montoye, A., Biswas, S., & Pfeiffer, K. (2014). Metabolic energy expenditure estimation using a position-agnostic wearable sensor system. 2014 IEEE Healthcare Innovation Conference.
Duclos, M., Fleury, G., Lacomme, P., Phan, R., Ren, L., & Rousset, S. (2016). An acceleration vector variance based method for energy expenditure estimation in real-life environment with a smartphone/smartwatch integration. Expert Systems with Applications, 63, 435-449.
Ellis, K., Kerr, J., Godbole, S., Lanckriet, G., Wing, D., & Marshall, S. (2014). A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiological Measurement, 35(11), 2191.
Farrahi, V., Niemelä, M., Tjurin, P., Kangas, M., Korpelainen, R., & Jämsä, T. (2019). Evaluating and enhancing the generalization performance of machine learning models for physical activity intensity prediction from raw acceleration data. IEEE Journal of Biomedical and Health Informatics, 24(1), 27-38.
Freedson, P. S., Lyden, K., Kozey-Keadle, S., & Staudenmayer, J. (2011). Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample. Journal of Applied Physiology, 111(6), 1804-1812.
García-García, F., García-Sáez, G., Chausa, P., Martínez-Sarriegui, I., Benito, P. J., Gómez, E. J., & Hernando, M. E. (2011). Statistical machine learning for automatic assessment of physical activity intensity using multi-axial accelerometry and heart rate. Conference on Artificial Intelligence in Medicine in Europe.
Garnotel, M., Bastian, T., Romero-Ugalde, H.-M., Maire, A., Dugas, J., Zahariev, A., Doron, M., Jallon, P., Charpentier, G., & Franc, S. (2018). Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry. Journal of Applied Physiology, 124(3), 780-790.
Gjoreski, H., Kaluža, B., Gams, M., Milić, R., & Luštrek, M. (2013). Ensembles of multiple sensors for human energy expenditure estimation. Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
Gjoreski, H., Kaluža, B., Gams, M., Milić, R., & Luštrek, M. (2015). Context-based ensemble method for human energy expenditure estimation. Applied Soft Computing, 37, 960-970.
Guidoux, R., Duclos, M., Fleury, G., Lacomme, P., Lamaudière, N., Manenq, P.-H., Paris, L., Ren, L., & Rousset, S. (2014). A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions. Journal of Biomedical Informatics, 52, 271-278.
Guidoux, R., Duclos, M., Fleury, G., Lacomme, P., Lamaudière, N., Saboul, D., Ren, L., & Rousset, S. (2017). The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. Journal of Biomedical Informatics, 69, 128-134.
Haapalainen, E., Laurinen, P., Siirtola, P., Roning, J., Kinnunen, H., & Jurvelin, H. (2008). Exercise energy expenditure estimation based on acceleration data using the linear mixed model. 2008 IEEE International Conference on Information Reuse and Integration.
Hamid, A., Duncan, M. J., Eyre, E. L., & Jing, Y. (2021). Predicting children’s energy expenditure during physical activity using deep learning and wearable sensor data. European Journal of Sport Science, 21(6), 918-926.
Härtel, S., Gnam, J. P., Löffler, S., & Bös, K. (2011). Estimation of energy expenditure using accelerometers and activity-based energy models-validation of a new device. European Review of Aging and Physical Activity, 8(2), 109-114.
Hiremath, S. V., Intille, S. S., Kelleher, A., Cooper, R. A., & Ding, D. (2016). Estimation of energy expenditure for wheelchair users using a physical activity monitoring system. Archives of Physical Medicine and Rehabilitation, 97(7), 1146-1153. e1141.
Ingraham, K. A., Ferris, D. P., & Remy, C. D. (2017). Using wearable physiological sensors to predict energy expenditure. 2017 International Conference on Rehabilitation Robotics (ICORR).
John, D., Liu, S., Sasaki, J., Howe, C., Staudenmayer, J., Gao, R., & Freedson, P. S. (2011). Calibrating a novel multi-sensor physical activity measurement system. Physiological Measurement, 32(9), 1473.
Kate, R. J., Swartz, A. M., Welch, W. A., & Strath, S. J. (2016). Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data. Physiological Measurement, 37(3), 360.
Kawahara, Y., Ryu, N., & Asami, T. (2009). Monitoring daily energy expenditure using a 3-axis accelerometer with a low-power microprocessor. International Journal on Human-Computer Interaction, 1(5), 145-154.
Kheirkhahan, M., Mehta, S., Nath, M., Wanigatunga, A. A., Corbett, D. B., Manini, T. M., & Ranka, S. (2017). A bag-of-words approach for assessing activities of daily living using wrist accelerometer data. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Lazar, D., Begum, M., Murshed, M. M., Nelson, B., Bock, J. M., Imboden, M., Kaminsky, L., & Montoye, A. (2020). Statistical Learning Methods to Predict Activity Intensity from Body-Worn Accelerometers. Journal of Biomedical Analytics, 3(1), 27-50.
Lee, J.-M., Kim, Y.-W., Kwon, Y.-S., Derrick, T. R., & Welk, G. J. (2015). Feasibility of calibrating smartphone to access physical activity. The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science, 17(3), 1-10.
Lee, M.-W., Khan, A. M., & Kim, T.-S. (2011). A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation. Personal and Ubiquitous Computing, 15(8), 887-898.
Lester, J., Hartung, C., Pina, L., Libby, R., Borriello, G., & Duncan, G. (2009). Validated caloric expenditure estimation using a single body-worn sensor. Proceedings of the 11th International Conference on Ubiquitous Computing.
Li, M., Kwak, K.-C., & Kim, Y. T. (2016). Estimation of energy expenditure using a patch-type sensor module with an incremental radial basis function neural network. Sensors, 16(10), 1566.
Lin, C.-W., Yang, Y.-T. C., Wang, J.-S., & Yang, Y.-C. (2012). A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation. IEEE Transactions on Information Technology in Biomedicine, 16(5), 991-998.
Lin, S.-Y., Lai, Y.-C., Hsia, C.-C., Su, P.-F., & Chang, C.-H. (2016). Validation of energy expenditure prediction models using real-time shoe-based motion detectors. IEEE Transactions on Biomedical Engineering, 64(9), 2152-2162.
Lin, W.-Y., Verma, V. K., Lee, M.-Y., & Lai, C.-S. (2018). Activity monitoring with a wrist-worn, accelerometer-based device. Micromachines, 9(9), 450.
Liu, C.-T., & Chan, C.-T. (2016). Exercise performance measurement with smartphone embedded sensor for well-being management. International Journal of Environmental Research and Public Health, 13(10), 1001.
Liu, K. C., Liu, C. T., Chen, C. W., Lin, C. C., & Chan, C. T. (2014). Accelerometry-based motion pattern analysis for physical activity recognition and activity level assessment. Applied Mechanics and Materials, 479, 818-822.
Liu, S., Gao, R. X., John, D., Staudenmayer, J., & Freedson, P. S. (2011). SVM-based multi-sensor fusion for free-living physical activity assessment. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Liu, S., Gao, R. X., John, D., Staudenmayer, J. W., & Freedson, P. S. (2011). Multisensor data fusion for physical activity assessment. IEEE Transactions on Biomedical Engineering, 59(3), 687-696.
Lu, K., Yang, L., Seoane, F., Abtahi, F., Forsman, M., & Lindecrantz, K. (2018). Fusion of heart rate, respiration and motion measurements from a wearable sensor system to enhance energy expenditure estimation. Sensors, 18(9), 3092.
Luštrek, M., Cvetković, B., & Kozina, S. (2012). Energy expenditure estimation with wearable accelerometers. 2012 IEEE international symposium on circuits and systems (ISCAS).
McGregor, S. J., Busa, M. A., Yaggie, J. A., & Bollt, E. M. (2009). High resolution MEMS accelerometers to estimate VO 2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PloS One, 4(10), e7355.
Miyatake, M., Nakamura, N., Nagata, T., Yuuki, A., Yomo, H., Kawabata, T., & Hara, S. (2016). VO2 estimation using 6-axis motion sensing data. 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT).
Mo, L., Liu, S., Gao, R. X., John, D., Staudenmayer, J. W., & Freedson, P. S. (2012). Wireless design of a multisensor system for physical activity monitoring. IEEE Transactions on Biomedical Engineering, 59(11), 3230-3237.
Montoye, A. H., Dong, B., Biswas, S., & Pfeiffer, K. A. (2014). Use of a wireless network of accelerometers for improved measurement of human energy expenditure. Electronics, 3(2), 205-220.
Montoye, A. H., Begum, M., Henning, Z., & Pfeiffer, K. A. (2017). Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Physiological Measurement, 38(2), 343.
Montoye, A. H., Dong, B., Biswas, S., & Pfeiffer, K. A. (2016). Validation of a wireless accelerometer network for energy expenditure measurement. Journal of Sports Sciences, 34(21), 2130-2139.
Mukaino, M., Ogasawara, T., Matsuura, H., Aoshima, Y., Suzuki, T., Furuzawa, S., ... & Otaka, Y. (2022). Validity of trunk acceleration measurement with a chest-worn monitor for assessment of physical activity intensity. BMC Sports Science, Medicine and Rehabilitation, 14(1), 1-11.
Nagata, T., Nakamura, N., Miyatake, M., Yuuki, A., Yomo, H., Kawabata, T., & Hara, S. (2016). VO 2 estimation using 6-axis motion sensor with sports activity classification. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Nakamura, N., Nagata, T., Miyatake, M., Yuuki, A., Yomo, H., Kawabata, T., & Hara, S. (2016). Applying neural network to VO 2 estimation using 6-axis motion sensing data. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Nakanishi, M., Izumi, S., Nagayoshi, S., Kawaguchi, H., Yoshimoto, M., Shiga, T., Ando, T., Nakae, S., Usui, C., & Aoyama, T. (2018). Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices. Biomedical Engineering Online, 17(1), 1-18.
Nnamoko, N., Cabrera-Diego, L. A., Campbell, D., Sanders, G., Fairclough, S. J., & Korkontzelos, I. (2021). Personalised Accelerometer Cut-point Prediction for Older Adults’ Movement Behaviours using a Machine Learning approach. Computer Methods and Programs in Biomedicine, 208, 106165.
O’Driscoll, R., Turicchi, J., Hopkins, M., Horgan, G. W., Finlayson, G., & Stubbs, J. R. (2020). Improving energy expenditure estimates from wearable devices: A machine learning approach. Journal of Sports Sciences, 38(13), 1496-1505.
Pande, A., Zeng, Y., Das, A. K., Mohapatra, P., Miyamoto, S., Seto, E., Henricson, E. K., & Han, J. J. (2013). Energy expenditure estimation with smartphone body sensors. Proceedings of the 8th International Conference on Body Area Networks.
Pande, A., Zhu, J., Das, A. K., Zeng, Y., Mohapatra, P., & Han, J. J. (2015). Using smartphone sensors for improving energy expenditure estimation. IEEE Journal of Translational Engineering in Health and Medicine, 3, 1-12.
Park, H., Dong, S.-Y., Lee, M., & Youn, I. (2017). The role of heart-rate variability parameters in activity recognition and energy-expenditure estimation using wearable sensors. Sensors, 17(7), 1698.
Pires, I. M., Felizardo, V., Pombo, N., Drobics, M., Garcia, N. M., & Flórez-Revuelta, F. (2018). Validation of a method for the estimation of energy expenditure during physical activity using a mobile device accelerometer. Journal of Ambient Intelligence and Smart Environments, 10(4), 315-326.
Popp, W. L., Schneider, S., Bär, J., Bösch, P., Spengler, C. M., Gassert, R., & Curt, A. (2019). Wearable sensors in ambulatory individuals with a spinal cord injury: from energy expenditure estimation to activity recommendations. Frontiers in Neurology, 10, 1092.
Rosenberger, M. E., Haskell, W. L., Albinali, F., Mota, S., Nawyn, J., & Intille, S. (2013). Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Medicine and Science in Sports and Exercise, 45(5), 964.
Rothney, M. P., Neumann, M., Béziat, A., & Chen, K. Y. (2007). An artificial neural network model of energy expenditure using nonintegrated acceleration signals. Journal of Applied Physiology, 103(4), 1419-1427.
Rousset, S., Guidoux, R., Paris, L., Farigon, N., Miolanne, M., Lahaye, C., Duclos, M., Boirie, Y., & Saboul, D. (2017). A novel smartphone accelerometer application for low-intensity activity and energy expenditure estimations in overweight and obese adults. Journal of Medical Systems, 41(8), 1-10.
Ruch, N., Joss, F., Jimmy, G., Melzer, K., Hänggi, J., & Mäder, U. (2013). Neural network versus activity-specific prediction equations for energy expenditure estimation in children. Journal of Applied Physiology, 115(9), 1229-1236.
Rumo, M., Amft, O., Tröster, G., & Mäder, U. (2011). A stepwise validation of a wearable system for estimating energy expenditure in field-based research. Physiological Measurement, 32(12), 1983.
Satizábal, H. F., Grillon, A., Picasso, G., Upegui, A., Millet, G., & Perez-Uribe, A. (2017). ActiDote–A wireless sensor-based system for self-tracking activity levels among manual wheelchair users. EAI Endorsed Transactions on Pervasive Health and Technology, 3(11).
Sazonov, E., Hegde, N., Browning, R. C., Melanson, E. L., & Sazonova, N. A. (2015). Posture and activity recognition and energy expenditure estimation in a wearable platform. IEEE Journal of Biomedical and Health Informatics, 19(4), 1339-1346.
Staudenmayer, J., Pober, D., Crouter, S., Bassett, D., & Freedson, P. (2009). An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. Journal of Applied Physiology.
Strath, S. J., Brage, S., & Ekelund, U. (2005). Integration of physiological and accelerometer data to improve physical activity assessment. Medicine and Science in Sports and Exercise, 37(11 Suppl), S563-571.
Strath, S. J., Kate, R. J., Keenan, K. G., Welch, W. A., & Swartz, A. M. (2015). Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Physiological Measurement, 36(11), 2335.
Su, S. W., Celler, B. G., Savkin, A. V., Nguyen, H. T., Cheng, T. M., Guo, Y., & Wang, L. (2009). Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements. Medical & Biological Engineering & Computing, 47(10), 1111-1117.
Tao, L., Burghardt, T., Mirmehdi, M., Damen, D., Cooper, A., Camplani, M., Hannuna, S., Paiement, A., & Craddock, I. (2017). Energy expenditure estimation using visual and inertial sensors. IET Computer Vision, 12(1), 36-47.
Tjurin, P., Niemelä, M., Huusko, M., Ahola, R., Kangas, M., & Jämsä, T. (2017). Classification of physical activities and sedentary behavior using raw data of 3D hip acceleration. European Medical and Biological Engineering Conference.
Trost, S. G., Wong, W.-K., Pfeiffer, K. A., & Zheng, Y. (2012). Artificial neural networks to predict activity type and energy expenditure in youth. Medicine and Science in Sports and Exercise, 44(9), 1801.
Trost, S., Cliff, D., Ahmadi, M. N., Van Tuc, N., & Hagenbuchner, M. (2018). Sensor-enabled activity class recognition in preschoolers: Hip versus wrist data. Medicine and Science in Sports and Exercise, 50(3), 634-641.
Van Hees, V. T., Van Lummel, R. C., & Westerterp, K. R. (2009). Estimating activity‐related energy expenditure under sedentary conditions using a tri‐axial seismic accelerometer. Obesity, 17(6), 1287-1292.
Vathsangam, H., Emken, A., Schroeder, E. T., Spruijt-Metz, D., & Sukhatme, G. S. (2011). An experimental study in determining energy expenditure from treadmill walking using hip-worn inertial sensors. IEEE Transactions on Bio-medical Engineering, 58(10), 2804.
Vathsangam, H., Emken, A., Schroeder, E. T., Spruijt-Metz, D., & Sukhatme, G. S. (2011). Towards a generalized regression model for on-body energy prediction from treadmill walking. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops.
Vathsangam, H., Emken, B. A., Schroeder, E. T., Spruijt-Metz, D., & Sukhatme, G. S. (2010). Energy estimation of treadmill walking using on-body accelerometers and gyroscopes. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.
Vathsangam, H., Schroeder, E. T., & Sukhatme, G. S. (2014). Hierarchical approaches to estimate energy expenditure using phone-based accelerometers. IEEE Journal of Biomedical and Health Informatics, 18(4), 1242-1252.
Vathsangam, H., Zhang, M., Tarashansky, A., Sawchuk, A. A., & Sukhatme, G. S. (2013). Towards practical energy expenditure estimation with mobile phones. 2013 Asilomar Conference on Signals, Systems and Computers.
Voleno, M., Redmond, S. J., Cerutti, S., & Lovell, N. H. (2010). Energy expenditure estimation using triaxial accelerometry and barometric pressure measurement. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.
Wang, J., Redmond, S. J., Voleno, M., Narayanan, M. R., Wang, N., Cerutti, S., & Lovell, N. H. (2012). Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure. Physiological Measurement, 33(11), 1811.
Wang, Q., Lohit, S., Toledo, M. J., Buman, M. P., & Turaga, P. (2016). A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Widianto, A., Sugiarto, T., Lin, Y.-J., Lee, Y.-H., & Hsu, W.-C. Physical activity intensity classification using a convolutional neural network and wearable accelerometer. The 16th International Conference on Automation Technology.
Zakeri, I., Adolph, A. L., Puyau, M. R., Vohra, F. A., & Butte, N. F. (2008). Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. Journal of Applied Physiology, 104(6), 1665-1673.
Zhu, J., Pande, A., Mohapatra, P., & Han, J. J. (2015). Using deep learning for energy expenditure estimation with wearable sensors. 2015 17th International Conference on E-health Networking, Application & Services.