Focusing on the bioimaging applications of RE-based NPs, different imaging approaches can be found in the literature, most of them based on LI and, to a lesser extent, on magnetic resonance imaging (MRI) and X-ray computed tomography (CT). The use of RE-based NPs for LI is based on the luminescent properties of Ln cations, which are included as dopants in a large variety of inorganic matrices such as oxides, fluorides, phosphates, vanadates, molybdates and wolframates. Such inorganic matrices do not necessarily have to be based on RE, although RE compounds normally facilitate the doping process, since the incorporation of the doping Ln cations with the same charge and very similar size is favored [18]. Two great groups of luminescent RE-based NPs can be established according with the selected dopant cations. On the one hand, downconversion nanoparticles (DCNPs) convert higher-energy photons into photons with lower energy (i.e. conventional Stokes luminescence) and often contain Eu3+, Tb3+ (codoped with Ce3+) and Dy3+, which are excited by ultraviolet (UV) radiation and emit in the visible region, and Nd3+, which is excited and emits in the near infrared (NIR) region. On the other hand, upconversion nanoparticles (UCNPs), mostly containing Er3+ or Tm3+ codoped with Yb3+, are able to emit shorter wavelength light after having been excited by long wavelength radiation (i.e. anti-Stokes luminescence). Both UCNPs and Nd3+ doped DCNPs have attracted high research interest, since they are excited by NIR radiation, avoiding thus photodamage and background fluorescence of biological systems and enabling a higher penetration depth into biological tissues [19].

As mentioned in Section 1, through the selection of the dopants cations, downconverting (DC) and upconverting (UC) phosphors can be obtained. Downconversion is a conventional Stokes luminescence process in which higher-energy photons are converted into lower-energy photons. Although DC luminescence is expected for most of the Ln cations, the majority of the luminescent DCNPs used for biomedical applications contain Eu3+, Tb3+ (often codoped with Ce3+) and Dy3+, which produce red, green and yellow luminescence, respectively [167], [168], [169], [170], [171]. The large energy difference between the lowest lying excited (emissive) state and the highest sublevel of the ground multiplet of these Ln ions minimize non-radiative (NR) processes and thus make them very appropriate for luminescent applications [172]. Nd3+is a DC ion of especial interest since it produces NIR luminescence after NIR excitation and has also been often employed. UC luminescence is a nonlinear optical process that converts two or more low-energy pump photons into a higher-energy output photon [34], [35], [173]. Several upconversion mechanisms have been reported in the literature, including excited-state absorption, energy transfer UC (ETU), photon avalanche, cooperative UC and energy migration-mediated UC. The mechanism mainly involved in the development of luminescent NPs for bioapplications is ETU, which will be described later. Readers interested in the other mechanisms may refer to more specialized reviews on this topic [31], [174], [175]. The most important Ln cations for UCNPs are Ho3+, Er3+ and Tm3+, in most cases codoped with Yb3+. Typical concentrations used to optimize brightness by increasing photon absorption and minimizing luminescence quenching are 2% mol active lanthanide cation (Eu3+, Ho3+, Tm3+) and 20% mol of the sensitizer cation (Yb3+) [19], [80], [176].




Non Conventional Energy Resources Book By G D Rai Free 808