14:30 Federico Nesti (ReTiS), Uncertainty estimation for deep learning
14:50 Katerina Papagiannouli (UniPi), Optimisation landscape of generative deep linear neural networks trained with Bures-Wasserstein
15:10 Giulio Rossolini (ReTiS), Metodi di ottimizzazione per attacchi avversari e difese real-world
15:30 Samuele Saviozzi (UniPi), Reinforcement learning in quantitative finance
15:40 coffee break
16:00 Andrea Agazzi (UniPi), Correcting covariance estimation for scalable Bayesian inference with SGD
16:20 Fabio Brau (ReTiS), Lipschitz-Bounded Neural Networks
16:40 Francesco Triggiano (UniPi), Gaussian processes based data augmentation and expected signature for time series classification
17:00 Discussione
Andrea Agazzi (UniPI)
Fabio Brau (SSSA)
Giorgio Carlo Buttazzo (SSSA)
Giuseppe Buttazzo (UniPi)
Marco Cococcioni (UniPi)
Francesco Grotto (UniPi)
Mario Maurelli (UniPi)
Eloy Mosig (UniPi)
Federico Nesti (SSSA)
Katerina Papagiannouli (UniPi)
Giulio Rossolini (SSSA)
Leonardo Roveri (UniPi)
Samuele Saviozzi (UniPi)
Dario Trevisan (UniPi)
Francesco Triggiano (SNS)
Si ringrazia il supporto di
Progetto PRA_2022_85 - APRISE (Analysis & PRobability In SciencE)
Comitato oganizzatore: Giorgio Carlo Buttazzo (ReTiS), Giuseppe Buttazzo (DM), Marco Romito (DM)