Applied Math and Computer Science Laboratory (AML-CS)
Welcome to the Applied Math and Computer Science Laboratory (AML-CS) at Universidad del Norte in Barranquilla, Colombia. The group was founded in Apr, 2017. AML-CS is a space that brings together people from different fields of science. We are highly motivated to solve real-life problems via scientific computing, mathematics, and statistics. Our students have the chance to face issues such as those found in Data Assimilation, Inverse Problems, Applied Statistics, and Numerical Optimization. For instance, Data-Driven models are of primary interest for us; it is fascinating to see what data can tell us about the underlying (physical) process. In this manner, we can forecast based on our statistical knowledge of the process. Also, we employ numerical models to predict physical phenomena and to understand the world where we live. In general, we are open to solve problems in the following fields:
- Data Assimilation Methods.
- Inverse Problems and Parameter Estimation.
- Combinatorial Optimization.
- Numerical Optimization.
- Bayesian Inference.
- High Performance Computing
Feel free to contact me if you want to be part of my group.
Elias D. Nino-Ruiz, Director.
Director:
Open positions for M.Sc. students: I have three (3) open positions for M.Sc. students to start in Spring 2020 at Universidad del Norte. The candidates should have good skills in Mathematics and Statistics. Research topics:
- Data-Driven models for Weather Forecasts + Data Assimilation.
- 4D-Var Data Assimilation Methods in High-Performance-Computing (HPC)
Your tuition fees will be covered. You will receive a stipend as well.
Candidates can submit their short CVs to enino at uninorte dot edu dot co
From left to right: Alfonso Mancilla, Juan Calabria, Elias Nino, Rolando Beltran, Randy Consuegra, and Luis Guzman
Sub-space Optimization of Non-Gaussian Data Assimilation Problems. Elias D. Nino-Ruiz, Carlos Ardila, Jesus Estrada and Jose Capacho. "A reduced-space line-search method for unconstrained optimization via random descent directions". Applied Mathematics and Computation, Elsevier, 341(2018): 15-30. https://doi.org/10.1016/j.amc.2018.08.020
Current Students:
- Alfonso Manuel Mancilla Herrera, Ph.D. in Computer Science, Non-Linear Data Assimilation.
- Luis Gabriel Guzman Reyes, Ph.D. in Computer Science, Shrinkage Covariance Matrix Estimation in Ensemble-Based Data Assimilation.
- Randy Consuegra Ortega, Ms.C. in Computer Science, Data-Driven Models for Variational Data Assimilation.
- Juan C. Calabria Sarmiento, Ph.D. in Computer Science, Data Assimilation Methods for Wind Energy Potential Estimation.
- Juan Sebastian Rodriguez Donado, Ms.C. in Computer Science, Hybrid Data Assimilation Methods for Air Pollution Estimation.
Formed Students:
- Luis Ernesto Morales Retat, M.Sc. in Computer Science, Soft Computing Methods for Optimal Radius of Influence Estimation in Ensemble Based Data Assimilation.
- Rolando Beltran Arrieta, Ph.D. in Computer Science, Non-Linear Data Assimilation via Sampling Methods.
External Collaborators:
- Xinwei Deng, Ph.D. - Associate Professor, Department of Statistics, Virginia Tech, Blacksburg VA 24060, USA.
- Haiyan Cheng, Ph.D. - Associate Professor, Chair, Department of Computer Science, Willamette University, Salem, Oregon 97301, USA.
Relevant Courses for Students in this Lab:
- Data Mining.
- Data Assimilation.
- Theory of Optimization.
- Variational Data Assimilation.
- Bayesian Inference.
- Finite Differences.
- Finite Elements.
Talks by Dr. Elias Nino-Ruiz:
- 19/09/2019 - Efficient Implementation of Ensemble Based Methods - First International Workshop on Data Assimilation for Decision Making, Barranquilla, Colombia (ENGLISH). (Video)
- 22/01/2019 - Ensemble Kalman Filter Based On A Modified Cholseky Decomposition, ISDA 2019 - 7th International Symposium on Data Assimilation, RIKEN R-CCS, Kobe, Japan (ENGLISH). (Video)
- 27/11/2018 - Covariance Matrix Estimation - Seminar of the Ph.D. in Mathematical Engineering, Universidad EAFIT, Colombia (SPANISH). (Video)
Documents of Interest:
Awards:
- Best Workshop Paper Award. A Surrogate Model Based On Mixtures Of Taylor Expansions For Trust Region Based Methods. ICCS 2017, Zurich, Zwitserland, June 2017. More info: http://www.iccs-meeting.org/iccs2017/awards/
Publications:
- Jairo Pimentel, Carlos Julio Ardila Hernandez, Elías Niño, Daladier Jabba Molinares, Jonathan Ruiz-Rangel. "Water Cycle Algorithm: Implementation and Analysis of Solutions to the Bi-Objective Travelling Salesman Problem", International Journal of Artificial Intelligence, CESER, Volume 17 (2), (2019). http://www.ceser.in/ceserp/index.php/ijai/article/view/6256
- Elias D. Nino-Ruiz, Xin-She Yang, "Improved Tabu Search and Simulated Annealing methods for nonlinear data assimilation", Applied Soft Computing, Elsevier, Volume 83, (2019). https://doi.org/10.1016/j.asoc.2019.105624
- Nino-Ruiz, E. D. "Non-linear data assimilation via trust region optimization". Computational and Applied Mathematics, Springer, 38:129 (2019). https://doi.org/10.1007/s40314-019-0901-x
- Elias D. Nino-Ruiz, Carlos Ardila, Jesus Estrada and Jose Capacho. "A reduced-space line-search method for unconstrained optimization via random descent directions". Applied Mathematics and Computation, Elsevier, 341(2018): 15-30. https://doi.org/10.1016/j.amc.2018.08.020
- Nino-Ruiz, E. D., Mancilla-Herrera, A. M., & Beltran-Arrieta, R. (2018, May). Non-Gaussian data assimilation via modified cholesky decomposition. In 2018 7th International Conference on Computers Communications and Control (ICCCC) (pp. 29-36). IEEE. https://ieeexplore.ieee.org/document/8390433/
- Elias D. Nino-Ruiz & Luis E. Morales-Retat. "A Tabu Search implementation for adaptive localization in ensemble-based methods". Soft Computing, Springer (2018) https://doi.org/10.1007/s00500-018-3210-1
- Nino-Ruiz, Elias D.; Cheng, Haiyan; Beltran, Rolando. "A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models." Atmosphere 9, no. 4: 126. (2018), http://www.mdpi.com/2073-4433/9/4/126
- Elias D. Nino-Ruiz. "Implicit Surrogate Models For Trust Region Based Methods", Journal of Scientific Computing, Elsevier, (2018), https://doi.org/10.1016/j.jocs.2018.02.003
- Elias D. Nino-Ruiz, "A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition", Atmosphere Journal, 8:125, (2017), https://doi.org/10.3390/atmos8070125
- Nino-Ruiz, E.D., Ardila, C. & Capacho, R. "Local search methods for the solution of implicit inverse problems", Soft Computing (2017), https://doi.org/10.1007/s00500-017-2670-z
- Elias D. Nino-Ruiz, Carlos J. Ardila, Alfonso Mancilla, Jesus Estrada, A Surrogate Model Based On Mixtures Of Taylor Expansions For Trust Region Based Methods, Procedia Computer Science, Volume 108, 2017, Pages 1473-1482, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2017.05.200.
- Elias D. Nino-Ruiz, Alfonso Mancilla, Juan C. Calabria, A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition, Procedia Computer Science, Volume 108, 2017, Pages 2049-2058, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2017.05.062.