WELCOME
WHAT WE DO
Intracellular pathogens need to manipulate the host cell environment in order to maximize conditions favorable to drive their own replication, which is usually accomplished through the hijacking of the host cell metabolic pathways to forage essential resources. High-throughput techniques allow this complex interplay to be investigated, leading to the identification of new therapeutic targets.
This stream is focused on better understanding the cellular changes induced during viral infection using the well-established model organisms of Escherichia coli and bacteriophage. Students investigate critical host-pathogen interactions to better understand the mechanisms employed by both the pathogen and the host to ensure their survival.
WHY IT MATTERS
With the alarming rise of antibiotic-resistant bacteria, scientists are revisiting the potential of bacteriophage therapy as a way to treat drug-resistant bacterial infections. Bacteriophage infect and hijack a bacterial cell in order to drive their own replication and as a result are completely dependent on the host cell to provide the building blocks to generate new virions. Viral manipulation of host cell metabolism is critical for successful replication, however, there is a lack of understanding about this critical host-pathogen interaction, especially for bacteriophage. Better characterization of phage metabolic adaptations could allow for potential improvements in phage therapy. This research could also more broadly be applied to better understanding viral replication in general and help identify novel potential therapeutic targets with big implication for human health.
WHAT YOU LEARN
All students will learn the basic techniques required to work in a standard microbiology lab, including sterile transfer and aseptic culture technique, preparation of culture media and plates, spectrophotometry, and bacteriophage preparation, plating, and quantification. The independent research projects undertaken in the FIRE HPI lab involve the genetic manipulation of both the E. coli host cell and different types of bacteriophage, metabolite profiling during infection, and measuring the dynamics of bacterial and viral replication under different conditions. Students also learn to collaborate with a group to design, execute, and present a research project of their choice.