\documentclass{article}
\usepackage{graphicx} % Required for inserting images
\usepackage{amsmath, amssymb, amsthm}
\title{Insert title}
\author{Name here}
\date{Due date here}
\begin{document}
\maketitle
\section*{Section 1.2}
\begin{enumerate}
\item[5.] Type question 5
\begin{proof}
The set of real numbers is written as $\mathbb{R}$.
The set of natural number is written as $\mathbb{N}$.
The set of integers is written as $\mathbb{Z}$.
The set of rational numbers is written as $\mathbb{Q}$.
Let $A,B$ be sets. We write the union of $A,B$ as $A\cup B$. We write the intersection of $A,B$ as $A\cap B$. $A$ is a subset of $B$ is written as $A\subset B$. $A$ is not a subset of $B$ is written as $A \not\subset B$.
If $x$ is an element of $A$, then we can write $x\in A$. If $x$ is not an element of $A$, then we can write $x\notin A$ or $x\not\in A$.
blah blah blah blah
\[\alpha, \beta, \kappa, \lambda\]
blah blah blah
\[a = b = c \leq d\]
blah blah
\begin{align*}
a &\implies b\\
&= c\\
&\leq d
\end{align*}
blah blah
\[x\in A\cup B \implies x\in A \text{ or } x\in B\]
% comment
\end{proof}
\item[7.] Type question
\begin{proof}
\end{proof}
\item[8.] Type question
\begin{proof}
\end{proof}
\end{enumerate}
\section*{Section 1.3}
\begin{enumerate}
\item[2.]
\item[4.]
\item[5.]
\end{enumerate}
\end{document}