Technical‎ > ‎Houdini‎ > ‎Isosurface‎ > ‎

Singularity

Round Stars:

max(max(abs($X),abs($Y)),abs($Z))-4+sqrt(min(min(abs($X),abs($Y)),abs($Z))^2+min(min(max(abs($X),abs($Y)),max(abs($X),abs($Z))),max(abs($Y),abs($Z)) )^2)*3
Square Stars:

max(max(abs($X),abs($Y)),abs($Z))-4+( abs( min( min( abs($X), abs($Y)), abs($Z)))+ abs( min( min( max( abs($X),abs($Y)),max( abs($X), abs($Z))),max( abs($Y),abs($Z)) )))*3
Virus:

-($X^2 + $Y^2 + $Z^2) +cos(deg(5*$X))*cos(deg(5*$Y))*cos(deg(5*$Z)) + 0.215
Tetrahedral:

($X^2 + $Y^2 + $Z^2)^2 + 8*$X*$Y*$Z - 10*($X^2 + $Y^2 + $Z^2) + 25
Blob 02:

$X^2 + $Y ^2 + $Z^2 +sin(deg(4*$X))+sin(deg(4*$Y))+sin(deg(4*$Z))-1
Wire Sphere:

(($X^2 + $Y^2 - 1)^2 + $Z^2)*(($Y^2 + $Z^2 - 1)^2 + $X^2)*(($Z^2 + $X^2 - 1)^2 + $Y^2) - ch("R")^2*(1 + ch("bb")*($X^2 + $Y^2 + $Z^2))
Trap:

 ($X^8 + $Z^30 + $Y^8 - ($X^4 + $Z^50 + $Y^4 -0.3))*($X^2 + $Y^2 + $Z^2 -0.5)
Crixxi:

($Y^2 + $Z^2-1)^2 + ($X^2+$Y^2-1)^3
Bloby Schwartz:

-($X^2 + $Y ^2 + $Z^2) +cos(deg(5*$X))+cos(deg(5*$Y))+cos(deg(5*$Z)) -.1
Nuts:

(sqrt($X^2+$Y^2+$Z^2) - 1.5) ^5 + $Y^2*$X^2*$Z^2
Icosahedron:

if( ($X^2 + $Y^2 +$Z^2 < 35), 2 - (cos(deg($X + (1+sqrt(5))/2*$Y)) + cos(deg($X - (1+sqrt(5))/2*$Y)) + cos(deg($Y + (1+sqrt(5))/2*$Z)) + cos(deg($Y - (1+sqrt(5))/2*$Z)) + cos(deg($Z - (1+sqrt(5))/2*$X)) + cos(deg($Z + (1+sqrt(5))/2*$X))) , 1)
Hunt Surface:

4* ($X^2 + $Y^2 + $Z^2 -13)^3 + 27 * (3*$X^2 + $Y^2 - 4*$Z^2 - 12)^2
Schwartz:

cos(deg($X)) + cos(deg($Y)) + cos(deg($Z))
Flower:

1 - (abs($X)+($Y^3)+abs($Z))
Treffle:

$X^4 * $Y^2 + $Y^4*$X^2 - $X^2*$Y^2+$Z^6
Spire:

$X^5+$X^8+$Y^5+$Z^5+$Z^8-(0.00017^(cos(2*$X)*cos(2*$Y)+cos(2*$Y)*cos(2*$Z)+cos(2*$Z)*cos(2*$X)))
Saturn:

(sqrt($X^2+$Z^2)-ch("c")) * (sqrt($X^2+$Z^2)-ch("r"))^2 + $Y*$Y - (ch("R")^2)
Bretzel Sphere:

(($X^2+$Y^2-0.8^2)^2+($Z^2-1)^2) * (($Y^2+$Z^2-0.8^2)^2+($X^2-1)^2) * (($Z^2+$X^2-0.8^2)^2+($Y^2-1)^2) -0.02
Blob Sphere:

cosd(5*$X)*cosd(5*$Y)*cosd(5*$Z) +(sind(5*$X)*sind(5*$Y)*sind(5*$Z)) -($X^8 + $Y^8 + $Z^8) -0.55
Mc Mullen:

(0.5+$X^2)*(0.5+$Y^2)*(0.5+$Z^2)+8*$X*$Y*$Z-0.5
Stern:

$X^2 * $Y^2 + $Y^2*$Z^2 + $X^2*$Z^2 + 0.01 * ($X^2 + $Y^2 + $Z^2 - 1)^3
Bretzel 4:

($X*$X*(1.21-$X*$X)^2*(3.8-$X*$X)^3-10*$Y*$Y)^2/10+60*$Z*$Z-2
Bretzel 2:

(($X^2*(1-$X^2)-$Y^2)^2+0.5*$Z^2-0.025*(1+($X^2+$Y^2+$Z^2)))
Worm:

(2^2 - 0^2 - (2 + 2.1)^2) * (2^2 - 0^2 - (2 - 2.1)^2)*((($X/0.6)/3.9)^4+($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))^4+($Y*sind(0.575383*($X/0.6)) + $Z*cosd(0.575383*($X/0.6)))^4)+ 2*((2^2 - 0^2 - (2 + 2.1)^2 )*(2^2 - 0^2 - (2 - 2.1)^2)* ((($X/0.6)/3.9)^2 * ($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))^2+(($X/0.6)/3.9)^2 * ($Y*sind(0.575383*($X/0.6)) + $Z*cosd(0.575383*($X/0.6)))^2+($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))^2 * ($Y*sind(0.575383*($X/0.6)) + $Z*cosd(0.575383*($X/0.6)))^2))+2* 2^2 *((-0^2-2^2+2^2+2.1^2)* (2 *(($X/0.6)/3.9) *2+2* ($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))* 0-2^2)-4*0 *2.1^2 *($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6))))*((($X/0.6)/3.9)^2+($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))^2+($Y*sind(0.575383*($X/0.6)) + $Z*cosd(0.575383*($X/0.6)))^2)+ 4 * 2^4 * (2 *(($X/0.6)/3.9)+0 *($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6))))* (-2^2+0 * ($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))+2 * (($X/0.6)/3.9))+4* 2^4 * 2.1^2 * ($Y*cosd(0.575383*($X/0.6)) - $Z*sind(0.575383*($X/0.6)))^2+2^8
Twisted Torus:

(sqrt(($X/2.7)*($X/2.7)+($Y*sin(deg(0.436332*$X)) + $Z*cos(deg(0.436332*$X)))*($Y*sin(deg(0.436332*$X)) + $Z*cos(deg(0.436332*$X))))-3)^2 + ($Y*cos(deg(0.436332*$X)) - $Z*sin(deg(0.436332*$X)))*($Y*cos(deg(0.436332*$X)) - $Z*sin(deg(0.436332*$X))) - 1
Bugs:

min( (($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))-0.7)*(($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))-0.7) + ($Y/2.9)*($Y/2.9) + ($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y)))*($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y))) - 1,  (($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))+0.5)*(($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))+0.5) + ($Y/2.9)*($Y/2.9) + ($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y)))*($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y))) - 1)
Column 01:

min( (($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))-0.7)*(($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))-0.7) + ($Y/2.9)*($Y/2.9) + ($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y)))*($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y))) - 1,  (($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))+0.5)*(($X*cos(deg(0.866646*$Y)) - $Z*sin(deg(0.866646*$Y)))+0.5) + ($Y/2.9)*($Y/2.9) + ($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y)))*($X*sin(deg(0.866646*$Y)) + $Z*cos(deg(0.866646*$Y))) - 1)
Column 02:

$X^5+$X^8+$Y^5+$Z^5+$Z^8-(0.00017^(cosd(3*$X)*cosd(3*$Y)+cosd(3*$Y)*cosd(3*$Z)+cosd(3*$Z)*cosd(3*$X)))
 Tree Of Life:

 2-($X^2+$Y^2)/55-0.135*$Z-cosd(sqrt($X^2+$Y^2))*sind(12*atan($Y/$X)) -cosd(12*atan($Y/$X))*sind($Z) -cosd($Z)*sind(sqrt($X^2+$Y^2))-0.3*(cosd(sqrt($X^2+$Y^2))*cosd(15*atan($Y/$X)) -cosd(15*atan($Y/$X))*cosd($Z) -cosd($Z)*cosd(sqrt($X^2+$Y^2)))

Comments