Nonnegative Matrix Factorization (NMF)

Nonnegative Tensor Factorization (NTF)

This page is established and maintained by Deli ZHAO (       Welcome to recommend insightful papers.

Nonnegative matrix factorization

  • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. (pdf) Adv. Neural Info. Proc. Syst. 13, 556-562 (2001).
  • D. D. Lee and H. S. Seung.  Learning the parts of objects by non-negative matrix factorization. (pdf) Nature 401, 788-791 (1999).
    • B. W. Mel. Computational neuroscience: Think positive to find parts (pdf), News and Views, Nature, 401, 759-760 (1999).
  • D. D. Lee and H. S. Seung.  Unsupervised learning by convex and conic coding. (pdfAdv. Neural Info. Proc. Syst. 9, 515-521 (1997).
  • Matthias Heiler and Christoph Schnörr:
    Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming

    JMLR, 7(Jul):1385--1407, 2006
  • P. O. Hoyer
    Non-negative Matrix Factorization with sparseness constraints
    Journal of Machine Learning Research  5:1457-1469, 2004.
    [ pdf ]
  • R. Zass and A. Shashua. Nonnegative Sparse PCA. Neural Information and Processing Systems (NIPS), Dec. 2006


Nonnegative Tensor factorization

  • T. Hazan, S. Polak and A. Shashua. Sparse Image Coding using a 3D Non-negative Tensor Factorization. International Conference on Computer Vision (ICCV)  Beijing, China, Oct., 2005
  • A. Shashua and T. Hazan. Non-Negative Tensor Factorization with Applications to Statistics and Computer Vision. International Conference on Machine Learning (ICML), Aug. 2005
  • Matthias Heiler and Christoph Schnörr:
       Controlling Sparseness in Non-Negative Tensor Factorization
       ECCV 2006, (accepted for oral presentation)
  • A. Shashua, R. Zass and T. Hazan. Multi-way Clustering Using Super-symmetric Non-negative Tensor Factorization. Proc. of the European Conference on Computer Vision (ECCV), May 2006, Graz, Austria.