DISCOS DUROS

DISCOS DUROS

Un disco duro (del inglés hard disk (HD)) es un disco magnético en el que puedes almacenar datos de ordenador. El disco duro es la parte de tu ordenador que contiene la información electrónica y donde se almacenan todos los programas (software). Es uno de los componentes del hardware más importantes dentro de tu PC.

El término duro se utiliza para diferenciarlo del disco flexible o disquete (floppy en inglés). Los discos duros pueden almacenar muchos más datos y son más rápidos que los disquetes. Por ejemplo, un disco duro puede llegar a almacenar más de 100 gigabytes, mientras que la mayoría de los disquetes tienen una memoria máxima de 1.4 megabytes.

Los discos duros pertenecen a la llamada memoria secundaria o almacenamiento secundario. Al disco duro se le conoce con gran cantidad de denominaciones como disco duro, rígido (frente a los discos flexibles o por su fabricación a base de una capa rígida de aluminio), fijo (por su situación en el ordenador de manera permanente). Estas denominaciones aunque son las habituales no son exactas ya que existen discos de iguales prestaciones pero son flexibles, o bien removibles o transportables, u otras marcas diferentes fabricantes de cabezas.

Las capacidades de los discos duros varían desde 10 Mb. hasta varios Gb. en minis y grandes ordenadores. Para conectar un disco duro a un ordenador es necesario disponer de una tarjeta controladora. La velocidad de acceso depende en gran parte de la tecnología del propio disco duro y de la tarjeta controladora asociada a los discos duro.

Estos están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central sobre el que se mueven. Para leer y escribir datos en estos platos se usan las cabezas de lectura/escritura que mediante un proceso electromagnético codifican / decodifican la información que han de leer o escribir. La cabeza de lectura/escritura en un disco duro está muy cerca de la superficie, de forma que casi vuela sobre ella, sobre el colchón de aire formado por su propio movimiento. Debido a esto, están cerrados herméticamente, porque cualquier partícula de polvo puede dañarlos.
 
 

- Direccionamiento

 

 

 

Hay varios conceptos para referirse a zonas del disco:

  • Plato: cada uno de los discos que hay dentro del disco duro.
  • Cara: cada uno de los dos lados de un plato.
  • Cabeza: número de cabezales.
  • Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
  • Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
  • Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro.

El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.

Componentes de un disco duro

Normalmente un disco duro consiste en varios discos o platos. Cada disco requiere dos cabezales de lectura/grabación, uno para cada lado. Todos los cabezales de lectura/grabación están unidos a un solo brazo de acceso, de modo que no puedan moverse independientemente. Cada disco tiene el mismo número de pistas, y a la parte de la pista que corta a través de todos los discos se le llama cilindro.

 

 

 

El disco duro está compuesto básicamente de:

 

- Varios discos de metal magnetizado, que es donde se guardan los datos.

- Un motor que hace girar los discos.

- Un conjunto de cabezales, que son los que leen la información guardada en los discos.

- Un electroimán que mueve los cabezales.

- Un circuito electrónico de control, que incluye el interface con el ordenador y la memoria caché.

- Una caja hermética (aunque no al vacío), que protege el conjunto.

Normalmente usan un sistema de grabación magnética analógica.

El número de discos depende de la capacidad del HDD y el de cabezales del número de discos x 2, ya que llevan un cabezal por cada cara de cada disco (4 discos = 8 caras = 8 cabezales).

Actualmente el tamaño estándar es de 3.5' de ancho para los HDD de pcs y de 2.5' para los discos de ordenadores portátiles.

 

Los componentes físicos de una unidad de disco duro son:

 

-      Los discos (Platters)

Están elaborados de compuestos de vidrio, cerámica o aluminio finalmente pulidos y revestidos por ambos lados con una capa muy delgada de una aleación metálica. Los discos están unidos a un eje y un motor que los hace guiar a una velocidad constante entre las 3600 y 7200 RPM. Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenar información de control.

 

-      Las cabezas (Heads)

Están ensambladas en pila y son las responsables de la lectura y la escritura de los datos en los discos. La mayoría de los discos duros incluyen una cabeza Lectura/Escritura a cada lado del disco, sin embargo algunos discos de alto desempeño tienen dos o más cabezas sobre cada superficie, de manera que cada cabeza atiende la mitad del disco reduciendo la distancia del desplazamiento radial. Las cabezas de Lectura/Escritura no tocan el disco cuando este esta girando a toda velocidad; por el contrario, flotan sobre una capa de aire extremadamente delgada(10 millonésima de pulgada). Esto reduce el desgaste en la superficie del disco durante la operación normal, cualquier polvo o impureza en el aire puede dañar suavemente las cabezas o el medio. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.

 

-      El eje

Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.

 

-      "Actuador" (actuator)

Es un motor que mueve la estructura que contiene las cabezas de lectura entre el centro y el borde externo de los discos. Un "actuador" usa la fuerza de un electro magneto empujado contra magnetos fijas para mover las cabezas a través del disco. La controladora manda más corriente a través del electro magneto para mover las cabezas cerca del borde del disco. En caso de una pérdida de poder, un resorte mueve la cabeza nuevamente hacia el centro del disco sobre una zona donde no se guardan datos. Dado que todas las cabezas están unidas al mismo "rotor" ellas se mueven al unísono.

 

 

 

 

Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:

 

-      Cilindros (cylinders)

 

El par de pistas en lados opuestos del disco se llama cilindro. Si el HD contiene múltiples discos (sean n), un cilindro incluye todos los pares de pistas directamente uno encima de otra (2n pistas). Los HD normalmente tienen una cabeza a cada lado del disco. Dado que las cabezas de Lectura/Escritura están alineadas unas con otras, la controladora puede escribir en todas las pistas del cilindro sin mover el rotor. Como resultado los HD de múltiples discos se desempeñan levemente más rápido que los HD de un solo disco.

 

-      Pistas (tracks)

Un disco está dividido en delgados círculos concéntricos llamados pistas. Las cabezas se mueven entre la pista más externa o pista cero a la más interna. Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Clúster.

 

-      Sectores (sectors)

Un byte es la unidad útil más pequeña en términos de memoria. Los HD almacenan los datos en pedazos gruesos llamados sectores. La mayoría de los HD usan sectores de 512 bytes. La controladora del H D determina el tamaño de un sector en el momento en que el disco es formateado. Algunos modelos de HD le permiten especificar el tamaño de un sector. Cada pista del disco está dividida en 1 ó 2 sectores dado que las pistas exteriores son más grandes que las interiores, las exteriores contienen más sectores.

 

Distribución de un disco duro

-      Clúster

Es una agrupación de sectores, su tamaño depende de la capacidad del disco. 

La siguiente tabla nos muestra esta relación.

  

Tamaño del Drive MB

Tipo de FAT

bits

Sectores por Cluster

Tamaño del Cluster Kb

0 –15

12

8

4

16-127

16

4

2

128-255

16

8

4

256-511

16

16

8

512-1023

16

32

16

1024-2048

16

64

32

 

Medidasque describen el desempeño de un HD

Los fabricantes de HD miden la velocidad en términos de tiempo de acceso, tiempo de búsqueda, latencia y transferencia. Estas medidas también aparecen en las advertencias, comparaciones y en las especificaciones. Tiempo de acceso (access time) Termino frecuentemente usado en discusiones de desempeño, es el intervalo de tiempo entre el momento en que un drive recibe un requerimiento por datos, y el momento en que un drive empieza a despachar el dato. El tiempo de acceso de un HD es una combinación de tres factores:

 

  1- Tiempo de Búsqueda (seek time)

Es el tiempo que le toma a las cabezas de Lectura/Escritura moverse desde su posición actual hasta la pista donde está localizada la información deseada. Como la pista deseada puede estar localizada en el otro lado del disco o en una pista adyacente, el tiempo de búsqueda variara en cada búsqueda. En la actualidad, el tiempo promedio de búsqueda para cualquier búsqueda arbitraria es igual al tiempo requerido para mirar a través de la tercera parte de las pistas. Los HD de la actualidad tienen tiempos de búsqueda pista a pista tan cortos como 2 milisegundos y tiempos promedios de búsqueda menores a 10 milisegundos y tiempo máximo de búsqueda (viaje completo entre la pista más interna y la más externa) cercano a 15 milisegundos.

 

2- Latencia (latency)

Cada pista en un HD contiene múltiples sectores una vez que la cabeza de Lectura/Escritura encuentra la pista correcta, las cabezas permanecen en el lugar e inactivas hasta que el sector pasa por debajo de ellas. Este tiempo de espera se llama latencia. La latencia promedio es igual al tiempo que le toma al disco hacer media revolución y es igual en aquellos drivers que giran a la misma velocidad. Algunos de los modelos más rápidos de la actualidad tienen discos que giran a 10000 RPM o más reduciendo la latencia.

 

3-CommandOverhead

Tiempo que le toma a la controladora procesar un requerimiento de datos. Este incluye determinar la localización física del dato en el disco correcto, direccionar al "actuador" para mover el rotor a la pista correcta, leer el dato, re direccionarlo al computador.

 

-      Transferencia

Los HD también son evaluados por su transferencia, la cual generalmente se refiere al tiempo en la cual los datos pueden ser leídos o escritos en el drive, el cual es afectado por la velocidad de los discos, la densidad de los bits de datos y el tiempo de acceso. La mayoría de los HD actuales incluyen una cantidad pequeña de RAM que es usada como cache o almacenamiento temporal. Dado que los computadores y los HD se comunican por un bus de Entrada/Salida, el tiempo de transferencia actual entre ellos esta limitado por el máximo tiempo de transferencia del bus, el cual en la mayoría de los casos es mucho más lento que el tiempo de transferencia del drive.

 

Como funciona un disco duro

 

1.    Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco.

 

2.    En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco.

 

3.    Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que los recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada.

 

4.    Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos.

 

5.    Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas.

 

6.    Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Clúster del disco comienza un archivo preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo.

 

7.    Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte más del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Clúster del archivo.

 

 

 

-       Tipos de discos duros

Los discos duros pueden ser clasificados por diferentes tipologías o clases, vamos a ver de forma breve un resumen general de los diferentes tipos de clasificación:

 

-       Clasificación por su ubicación interna o externa

Esta clasificación sólo nos proporcionará información sobre la ubicación del disco, es decir, si el mismo se encuentra dentro de la carcasa del ordenador o bien fuera de la misma, conectándose al PC mediante un cable USB o Firewire.

Dentro de los discos duros externos tenemos los discos FireWire, USB y los nuevos SATA.

 

-       Clasificación por tamaño del disco duro

Esta clasificación atiende únicamente a al tamaño del disco duro, desde los primeros discos duros comerciales que comenzaron a llegar al mercado y cuyo tamaño era de 5,25 pulgadas a los más modernos de 1,8 pulgadas contenidos en dispositivos MP3 y ordenadores portátiles de última generación.

Los discos duros con los que suelen ir equipados los ordenadores de escritorio o de sobremesa son discos duros de 3,5" pulgadas, son los más utilizados y por tanto los más económicos, existiendo en la actualidad modelos que ya se acercan a 1 >Terabyte< de capacidad.

 

-       Clasificación por el tipo de controladora de datos

La interface es el tipo de comunicación que realiza la controladora del disco con la placa base o bus de datos del ordenador.

La controladora de datos para discos duros internos más común en la actualidad es la SATA o serial ATA, anteriormente ATA a secas, sus diferencias con la antigua ATA, también denominada IDE es que SATA es mucho más rápida en la transferencia de datos, con una velocidad de transferencia muy cercana a los discos duros profesionales SCSI.

El tipo de controladora SCSI se encuentra reservada a servidores de datos pues la tecnología que emplean es superior a costa de ser mucho más costosa y disponer de menor capacidad por disco, un disco duro SCSI de 100 Gb. valdrá más caro que un disco duro SATA de 250 Gb. no obstante la velocidad de transferencia de información y sobre todo la fiabilidad del disco duro SCSI y de la controladora SCSI es muy superior. Por este mismo motivo hace ya algunos años, aproximadamente hasta el año 2000 los ordenadores Apple Mac equipaban siempre discos duros SCSI pues eran máquinas bastante exclusivas, hoy en día los Mac han reducido su precio, entre otras cosas reduciendo o equiparando la calidad de sus componentes por la de los ordenadores PC de fabricantes como HP, Compaq, Dell, etc. y se han popularizado hasta tal punto que en territorios como USA ya está alcanzando una cuota de mercado superior al 15%.

 

-       Clasificación por tipo de ordenador

En la actualidad se venden más ordenadores portátiles que ordenadores de sobremesa, por eso también existe la clasificación por el tipo de ordenador, es algo muy común encontrar ofertas de empresas de informática donde ofrecen: "Disco duro para portátil" los discos duros para portátil difieren de los discos duros normales básicamente en su tamaño aunque también en su diseño interior pues están preparados para sufrir más golpes debido a la movilidad de los equipos que lo contiene.

En el disco duro es donde los ordenadores portátiles suelen tener su talón de Aquiles, pues si juntamos su movilidad, todo lo que se mueve sufre golpes, y su reducido tamaño incapaz en muchas ocasiones de ventilar el interior del ordenador tenemos un cóctel explosivo.

La escasa ventilación de un portátil hará que el disco duro sufra numerosos >cambios térmicos< y exceso de calor en sus circuitos, factores de alto riesgo para la conservación de los datos del disco duro.

También podemos clasificar dentro de este grupo los discos duros de servidor que suelen ser discos duros normales, bien SCSI o SATA pero con la peculiaridad de que se encuentran conectados a complejas tarjetas >RAID< cuya función es la de replicar los datos de forma automática de forma que al escribir un archivo o documento en él dicha información se duplica, triplica o cuatriplica en la matriz o array de discos duros que contenga el servidor.

 

Tipos de conexión

Si hablamos de disco duro podemos citar los distintos tipos de conexión que poseen los mismos con la placa base, es decir pueden ser SATA, IDE, SCSI o SAS:

 

  • IDE: Integrated Device Electronics ("Dispositivo con electrónica integrada") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.

 

  • SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.

 

  • SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente.

 

  • SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión en caliente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.

 

Arreglo redundante de discos independientes

¿Qué es tecnología RAID?

El concepto de RAID fue desarrollado por un grupo de científicos en la Universidad de California en Berkley en 1987. Los científicos investigaban usando pequeños HD unidos en un arreglo (definido como dos o mas HD agrupados para aparecer como un dispositivo único para el servidor) y compararon el desempeño y los costos de este tipo de configuración de almacenamiento con el uso de un SLED (Single LargeExpensive Disk), común en aplicac iones de MainFrames.

 

 DEFINICIONES:

 

-      RAID 0

También llamado partición de los discos, los datos son distribuidos a través de discos paralelos. RAID 0 distribuye los datos rápidamente a los usuarios, pero no ofrece más protección a fallas de hardware que un simple disco.

 

-      RAID 1

También llamado Disk mirroring provee la más alta medida de protección de datos a través de una completa redundancia. Los datos son copiados a dos discos simultáneamente. La disponibilidad es alta pero el costo también dado que los usuarios deben comprar dos veces la capacidad de almacenamiento que requieren.

 

-      RAID 0/1

Combina Disk mirroring y partición de datos. El resultado es gran disponibilidad al más alto desempeño de entrada y de salida para las aplicaciones de negociosmáscríticas. A este nivel como en el RAID 1 los discos so n duplicados. Dado que son relativamente no costosos, RAID 0/1 es una alternativa para los negocios que necesitan solamente uno o dos discos para sus datos, sin embargo, el costo puede convertirse en un problema cuando se requieren más de dos discos.

 

-      RAID 3

Logra redundancia sin mirroring completo. El flujo de los datos es particionado a través de todos los HD de datos en el arreglo. La información extra que provee la redundancia estáescrito en un HD dedicado a la parida d. Si cualquier HD del arreglo falla, los datos perdidos pueden ser reconstruidos matemáticamente desde los miembros restantes del arreglo. RAID 3 es especialmente apropiado para procesamiento de imagen, colección de datos científicos, y otras aplicaciones en las cuales grandes bloques de datos guardados secuencialmente deben ser transferidos rápidamente.

 

-      RAID 5

Todos los HD en el arreglo operan independientemente. Un registro entero de datos es almacenado en un solo disco, permitiendo al arreglo satisfacer múltiples requerimientos de entrada y salida al mismo tiempo. La informacióncute;n de paridad está distribuida en todos los discos, aliviando el cuello de botella de acceder un solo disco de paridad durante operaciones de entrada y salida concurrentes. RAID 5 está bien recomendado para procesos de transacciones on-line, automatización de oficinas, y otras aplicaciones caracterizadas por gran número de requerimientos concurrentes de lectura. RAID 5 provee accesos rápidos a los datos y una gran medida de protección por un costo más bajo que el Disk Mirroring.

 

-      RAID 10

La información se distribuye en bloques como en RAID-0 y adicionalmente, cada disco se duplica como RAID-1, creando un segundo nivel de arreglo. Se conoce como "striping de arreglos duplicados". Se requieren, dos canales, dos discos para cada canal y se utiliza el 50% de la capacidad para información de control. Este nivel ofrece un 100% de redundancia de la información y un soporte para grandes volúmenes de datos, donde el precio no es un factor importan te. Ideal para sistemas de misión crítica donde se requiera mayor confiabilidad de la información, ya que pueden fallar dos discos inclusive (uno por cada canal) y los datos todavía se mantienen en línea. Es apropiado también en escrituras aleatorias pequeñas.

 

-      RAID 30

Se conoce también como "striping de arreglos de paridad dedicada". La información es distribuida a través de los discos, como en RAID-0, y utiliza paridad dedicada, como RAID-3 en un segundo canal. Proporciona u na alta confiabilidad, igual que el RAID-10, ya que también es capaz de tolerar dos fallas físicas de discos en canales diferentes, manteniendo la información disponible. RAID-30 es el mejor para aplicaciones no interactivas, tales como señales de video, gráficos e imágenes que procesan secuencialmente grandes archivos y requieren alta velocidad y disponibilidad.

 

-      RAID 50

Con un nivel de RAID-50, la información se reparte en los discos y se usa paridad distribuida, por eso se conoce como "striping de arreglos de paridad distribuida". Se logra confiabilidad de la información, un buen rendimiento en general y además soporta grandes volúmenes de datos. Igualmente, si dos discos sufren fallas físicas en diferentes canales, la información no se pierde. RAID-50 es ideal para aplicaciones que requieran un almacenamiento altamente confiable, una elevada tasa de lectura y un buen rendimiento en la transferencia de datos. A este nivel se encuentran aplicaciones de oficina con muchos usuarios accediendo pequeños archivos, al igual que procesamiento de transacciones.

Una de las técnicas más conocidas en la informática para hacer esto es la del uso de memorias intermedias, buffers o cachés.

 

-       Buffer De Pista: Es una memoria incluida en la electrónica de las unidades de disco, que almacena el contenido de una pista completa. Así cuando se hace una petición de lectura de una pista, esta se puede leer de una sola vez, enviando la información a la CPU, sin necesidad de interleaving.

 

 

-       Cachés De Disco: Pueden estar dentro del propio disco duro, en tarjetas especiales o bien a través de programas usar la memoria central. La gestión de esta memoria es completamente invisible y consiste en almacenar en ella los datos más pedidos por la CPU y retirar de ella aquellos no solicitados en un determinado tiempo. Se usan para descargar al sistema de las lentas tareas de escritura en disco y aumentar la velocidad.

Aparte de la velocidad del disco duro y de la controladora la forma en que se transfieren los datos de ésta a la memoria deciden también la velocidad del sistema. Se pueden emplear 4 métodos:

 

-       Programed I/O (Pio Mode): La transferencia de datos se desarrolla a través de los diferentes puerto I/O de la controladora que también sirven para la transmisión de comandos (IN / OUT). La tasa de transferencia está limitada por los valores del bus PC, y por el rendimiento de la CPU. Se pueden lograr transferencias de 3 a 4 Mbytes. Con el modo de transferencia PIO 4, que es el método de acceso que actualmente utilizan los discos más modernos, es posible llegar a tasas de transferencia de 16,6 Mbytes / seg.

 

-       Memorymapped I/O: La CPU puede recoger los datos de la controladora de forma más rápida, si los deja en una zona de memoria fija, ya que entonces se puede realizar la transferencia de los datos a una zona de memoria del programa correspondiente con la introducción MOV, más rápida que los accesos con IN y OUT. El valor teórico máximo es de 8 Mbytes / seg.

 

 

-       DMA: Es la transferencia de datos desde el disco a la memoria evitando pasar por la CPU. La ventaja de usar el DMA es que se libera al procesador para trabajar en otras tareas mientras las transferencias de datos se realizan por otro lado. El DMA además de ser inflexible es lento, no se puede pasar de más de 2 Mb. por segundo.

-       Bus Master DMA: En esta técnica la controladora del disco duro desconecta la controladora del bus y transfiere los datos con la ayuda de un cotrolador Bus Master DMA con control propio. Así se pueden alcanzar velocidades de 8 a 16 Mb. por segundo.

 

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:

 

  • Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).

 

  • Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.

 

  • Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.

 

  • Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.

 

  • Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.

 

  • Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.

 

Otras características son:

  • Caché de pista: Es una memoria tipo Flash dentro del disco duro.

 

 

  • Landz: Zona sobre las que aparcan las cabezas una vez se apaga la computadora.

 

 

Últimas Tecnologías y Tendencias

La aceleración del los nuevos disco IDE se basan en dos métodos:

-       Con el control de flujo a través de IORDY (en referencia a la línea de bus ATA " Canal de e/s preparado" se acelera el control PIO. Gracias al control de flujo, la parte electrónica de la unidad de disco puede regular las funciones de transferencia de datos del microprocesador, y el disco duro puede comunicarse con el bus a mayor velocidad de manera fiable. El standard PIO modo 3 tiene una transferencia teórica máxima de 11,1 Mbytes / seg., el nuevo PIO modo 4 de 16,6 Mbytes, y el futuro PIO modo 5 promete hasta 33 Mbytes / seg.

 

-       El otro método alternativo denominado FAST Multiword DMA con el controlador DMA (acceso directo a memoria) sustituye al procesador en el gobierno de las transferencias de datos entre el disco duro y la memoria del sistema. SSF define que el Modo 1 de transferencias DMA soporte velocidades internas de hasta 13,3 Mbps, lo que es equiparable a los resultados del control PIO en modo 3.

Los disco duros de hoy (especialmente los de mañana) se adentran en complicadas tecnologías y campos científicos (mecánica cuántica, aerodinámica, y elevadas velocidades de rotación). La combinación de estas tecnologías permite que la capacidad de los discos duros aumente cerca de un 60 % cada año; cada cinco años se multiplica por diez su capacidad. Los analistas esperan que este ritmo de crecimiento no se mantenga hasta finales de siglo.

Para mejorar las posibilidades del disco duro hay que acercar los cabezales a la superficie del disco. Los cabezales pueden escribir y leer dominios magnéticos menores, cuanto menor sean éstos mayor densidad de datos posible de cada plato. Pero cuanto más cerca estén los cabezales, mayor será la probabilidad de colisión con la superficie. Una solución es recubrir el plato con materiales protectores, rediseñar las características aerodinámicas de los cabezales, etc. Además el paso de una mayor cantidad de datos por los cabezales exige perfeccionar los componentes electrónicos, e incluso puede obligar a ampliar la memoria caché integrada . Además no hay que olvidar que los dominios menores son estables a las temperaturas de funcionamiento normales. Y todo esto a un precio competitivo.

Ejemplo de nuevos diseños es la tecnología MR (Magnetoresistiva) de IBM que utiliza nuevos materiales. Usa cabezales con mejor relación señal /ruido que los de tipo inductivo, separando los de lectura de los de escritura. Pueden trabajar con dominios magnéticos menores aumentando la densidad de almacenamiento. Además son menos sensibles al aumento de la velocidad permitiendo velocidades de rotación mayores. Sus inconvenientes son su dificultad y alto precio de fabricación, y su sensibilidad ante posibles cargas eléctricas. Se investiga en una mejora llamada GMR (MR Gigante) que emplea el efecto túnel de electrones de la mecánica cuántica.

Nuevas tecnologías van encaminadas a potenciar la resistencia de la superficie magnética de los platos con materiales antiadherentes derivados del carbono. Esto junto con las técnicas de cabezales de grabación en proximidad, los TRI-PAD (cabezales trimorfos) y los de contacto virtual permiten acercar los cabezales hasta incluso entrar ocasionalmente en contacto con la superficie del plato.

A través de la técnica de carga dinámica del cabezal se garantiza la distancia de vuelo del cabezal respecto a la superficie, usando zonas de seguridad y cierres inerciales en las cabezas. Así no se necesita una preparación especial de la superficie del plato.

  
Comments