Books & Papers

Graduate Books & Articles

\rightline {{\bf READINGS}}

 

\noindent

{\bf 1.Prof. Daniel BUMP's papers \& notes}

 

    [ ]  Automorphic forms on $GL(3,R)$ SLN 1083, 1984

 

    [ ]  The "Exterior square" automorphic $L$-functions on $GL(4)$

 

    [ ]  Cubic metaplectic forms on $GL(3)$   1986

 

    [ ]  Barnes' second lemma and its application ro Rankin-Selberg convolution,  1986

 

    [ ]  On Riemann's Zeta function   1986

 

    [ ]  Some Euler Products associated with cubic metaplectic forms of $GL(3)$   1986

 

    [ ]  On Shimura's correspondence   1987

 

    [ ]  Poincare series and Kloosterman sums for $SL(3,Z)$   1988

   

    [ ]  A nonvanishing theorem for derivatives of automorphic $L$-functions with applications to elliptic curves   1989

 

    [ ]  On Mellin Transforms of Unramified Whittaker functions on $GL(3,C)*$  1989

 

    [ ]  The Rankin-Selberg Method: a survey  1989

 

    [?]  Some conjectured relationships between theta functions and Eisenstein series on the metaplectic group. SLN, 1989, 1-11.

 

    [ ]  On Waldspurger's theorem  (Auto. forms \&Analytic Number theory,  QA243 C76)

 

    [ ]  Algebraic geometry note: I-Abelian varieties;  II-Theory of elliptic curves. (Sp 90)

 

    [ ]  Notes on Applications of representation theory (Math 210B) Winter 1991.

 

    [ ]  Nonvanishing theorems for $L$-functions of modular forms and their derivatives,   1990

 

    [ ]  Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic $L$-functions and their derivatives 1990

 

    [ ]  The Kobota symbol for $Sp(4,Q(i))$   1990

 

    [ ]  $p$-adic Whittaker functions on the metaplectic group   1991

 

    [ ]  Symmetric square $L$-functions on $GL(r)$   1991

 

    [ ]  The exterior square automorphic $L$-functions on $GL(n)$   1991

 

    [ ]  Spin $L$-functions on symplectic groups   1991

 

    [ ]  Introduction to Weil representation   1991

 

    [ ]  Notes:  on representations of $GL(r)$ over a finite fields 1991

 

    [ ]  Notes:  The exterior square $L$-functions on $GL(n)$ following J-S, 1991

 

    [ ] (5/28)  An estimatefor the Hecke Eigenvalues of Maass forms. Duke Math J.66, 1992 (75-81)   (Bump, Jeffrey, Duke, Iwaniec)

 

    [ ] -- Chapter 1: Modular forms; Math 248A, Win. 1992, Stanford U.

 

\hskip 12pt   --  Chapter 2: Auto forms and Rep'n theory for $GL(2)$. Fall 1992

 

\hskip 12pt   --  Chapter 3: Auto forms on $GL(1)$ .Fall 1992

   

\hskip 12pt   --  Chapter 4: Rep'n of $GL(n)$ over $p$-adic field. Spring 94.

 

    [ ]  Whittaker-Orthogonal models, functoriality, and  Rankin-Selberg method, (\&Friedberg, Ginzburg) 1993

   

    [ ]  An introduction to Jacquet-Langlands theory, for MSRI summer 93

 

    [ ]  Lecture notes in ``Lie Groups and Lie Algebra''   Winter 1994.

   

\noindent =======================================================

 

\noindent

{\bf 2. AUTOMORPHIC FORMS } (BOOKS):

   

    [ ] BELLMAN, A Brief intro to theta function QA345B4

 

    [ ]  BOREL, A, WALLACH, F  Countinuos cohomology, discrete groups,  and representations of reductive groups. Princeton U. Press. Annals od Math studies 94, 1980

 

    [ ]  BOREL,   Linear Algebraic groups      QA 564 B58

 

    [*]  CASSELMAN, W.  Introduction to the theory of admissible

        repn's of p-adic groups.

   

    [ ] FREITAG, Eberhard. Hilbert modular forms.   QA 573, F73

 

    [R]  FULTON, William; HARRIS, Joe. Rep'n theory.(Readings in Math.129)QA171 F85 1991.

 

    [ ] GARRETT, Paul B., Holomorphic Hilbert Modular form   QA 573, G37, 1990

 

    [*]  GELBART, S S, Automorphic forms on adele groups, Study 83

   

    [ ]  GELBART, SLM 627 (about L-function)

 

    [*]  GELBART, P-S, RALLIS, Stephen,  Explicit Constructions of Auto. $L$-functions  SLN 1254

 

    [*]  GELBART, SHAHIDI, F.  Analytic properties of automorphic $L$-functions

 

    [*]  GELFAND, I M, KAZHDAN, D.  Rep'ns of  group $GL(n,K)$,$K$ is a local field.   in "LGR"

 

    [*]  GELFAND, GRAEV, M.I., P-SHAPIRO, I.  Rep'n theory and automorphic functions  1990

 

    [*]  GODEMENT, R  Notes on the Langlands's theory

 

    [ ]  GODEMENT, JACQUET, H.  Zeta functions of simple algebras SLN 260 (1972)

 

    [ ]  HOWE, R., UMEDA, T.  The Capelli identity, the double commutant  theorem, and multiplicity-free actions,  preprint  (1990)

 

    [ ]  A. IVIC, (Lectures) Mean values of the Riemann $\zeta$-functions. QA246.I938,1991b(Tata Inst.)

 

    [ ] IGUSA, Jun-ichi, Theta functions,   QA345 I49

 

    [*]  IWASAWA, Kenkichi,  Lectures on $p$-adic $L$-functions  Study 74

 

    [ ]  JACQUET, H, LANGLANDS   Automorphic forms on $GL(2)$- SLN 114

 

    [*]  JACQUET, Automorphic forms on $GL(2)$ - SLN 278

   

    [ ]  JAMES, Gordon, LIEBECK, Martin, Repn's and char's of (finite) groups (examples and exercises) QA176 J36, 1993.

 

    [ ]  KNAPP, Anthony W. Rep'n Theory of Semisimple groups QA3.P6 vol.36, 1986

 

    [ ]  LERNER, Joseph  A short course in Automorphic functions  QA351 L42

 

    [ ]  IKEDA, T.  On the location of the poles of the triple $L$-functions,  Preprint 1990

 

    [ ]  KATO, S.  On an explicit formula for class-1 Whittaker functions on split reductive groups over $p$-adic fields, Preprint, U.of  Tokyo, 1978

 

    [ ]  LANGLANDS, R.  Problems in the theory of automorphics forms SLN 170 (1970)

   

    [*]  LANGLANDS,  On the functional equations satisfied by Ei. series, SLN 544.

 

    [*]  LANGLANDS, Euler products

 

    [ ]  P-SHAPIRO, I.  Auto. functions and  geometry of Classical Domains,   QA351 P513

 

    [*]  P-S, I.  Euler subgroups.    in "LGR"

 

    [*]  RAMAKRISHRAN, Dinakar,  Modern Number theory

 

    [*]  RAMAKRISHRAN,  Automorphic forms

 

    [ ]  SAVIN, G.  On the tensor product of theta representation of  $GL(3)$ preprint 1991

 

    [*]  SILVERMAN, Joseph H.  The Arithmetic of elliptic curves.

           

    [ ]  WALLACH, Nolan. Real Reductive Groups I,II QA387 W3, 1988.

 

    [ ]  WARNER,  Harmonic Analysis on Semisimple Lie Groups

 

    [ ]  YULIE, Akihoke, Shintani Zeta function QA351Y85, 1993

 

    [ ]  ZELEVINSLI Rep'n theory of finite classical groups. SLN...

 

\noindent =======================================================

 

\noindent

{\bf 3.  COLLECTION, :}

 

    [*]  AFRL   = Auto. forms, Rep'ns and $L$-functions  AMS Proc.Symp. PureMath.vol33.p2,1979.

 

    [*]  AFRTA  = Automorphic forms, rep'ns theory, and arithmetic Bombay Colloquium 1979

 

    [ ]  AFSVL  = Auto. forms, Shimura varieties \& $L$-functions,  L. Clozel, J. Milne  ed. (1990) QA331.A96

 

    [ ]  LGR    = Lie groups and their representations (1975)

 

    [ ]  P-SF   = P-S. Festscrift, p.II, Israel Math Comference Proceedings 3(1990) QA1I9, Vol 2-3

 

    [ ]  MFR    = Modular forms, edited by RANKIN, R.A.  QA243 M69  1984

 

    [ ]  HAHS   = Harmonic analysis on homog. spaces. Sym. in Pure Math. Vol26.QA1 A626.

 

    [ ]  AUBERT, BOMBIERI, GOLDFELD,  Number theory, trace formulasand discrete groups. (Alte Selberg 1987) QA241 N877.

 

    [ ]  MURTY, Ram (editor) * Automorphic forms and Analytic number  theory. QA243C76,1989

 

     \hskip 50pt   * Theta Functions. From the Classical to the modern QA345 T47 1993

 

\noindent =======================================================

 

\noindent

{\bf 4.  ARTICLES:}

 

    [*]  ASAI, Tetsuya  On certain Dirichlet series associated with Hilbert Modular forms and Rankin's method

 

    [*]  BERNSTEIN,I, Mero Continuation of Eisemstein series (2 papers)

 

    [*]  BERNSTEIN, I, ZELEVINSKY, A.  Representations of the groups  $GL(n,F)$ where $F$ is a local non-arch field. Russian mathematical Surveys 3 (1976) 1-68

 

    [*]  BERSTEIN, ZELEVINSKY: Induced representations of reductive  $p$-adic groups.  Annals Scient. de L'ecole Normale superieure (1977)

 

    [*]  BOREL, A.  Automorphic $L$-functions,     in "AFRL"

 

    [*]  CASSELMAN, Canonical extensions of Harish-Chandra modules.

            Can.J.Math. 1989,385-438.

   

    [*]  CASSELMAN, W., SHALIKA, J.  The unramified principal series of  $p$-adic groups II: the Whittaker function, Compositio MAth 41  (1980) 207-231

 

    [*]  DUKE, William, VARDI, Ilan  On codes and Siegel modular forms.

 

    [*]  FLICKER, Y.  The adjoint lifting from $SL(2)$ to $PGL(3)$

 

    [ ]  FLICKER, KAZHDAN, D., SAVIN, G.  Explicit realization of a metaplectic representation, J. d'Analyse Math 55 (1990) 17-39

 

    [*]  FURUSAWA, Massaki, On $L$-functions for $GSp(4)\times GL(2)$  and their special values.  J.reine angew Math(438)1993, 187-213

 

    [*]  GARRETT, Paul,  Decomposition of Eisenstein series: Rankin triple products.  Annals of Math 125(1987) 209-235.

 

    [ ]  GELBART, S, JACQUET, H.   A relation between automorphic repre- sentations of $GL(2)$ and $GL(3)$, Ann. Sci. Ecole Normale Sup. 4' serie, 11 (1978) 471-552

 

    [ ]  GELBART, P-SHAPIRO, I.  Distinguished representationsand modulare forms od half integral weight, Invent. Math.59 (1980), 145-88

 

    [*]  GELBART, P-S, I.  $L$-functions for $G\times GL(n)$, in SLN 1254

 

    [*]  GELFAND, KAZHDAN, Representation of $GL(n,K), K$  local field, in LGR

 

    [*]  GINZBURG, D.  $L$-functions for $SO(n)\times GL(k)$

 

    [*]  GODEMENT in AMS 9:

- The decomposition of $L^2(G/\Gamma)$, where $\Gamma=SL(2,Z)$.

 

        \hskip 128pt - Spectral decomposition of Cusp-forms.

   

    [*]  JACOBSON, Composition Alg and their automorphism 1958.

 

    [*]  JACQUET,H, SHALIKA,J.  Exterior square $L$-functions,  in "AFSVL"

 

    [*]  JACQUET, SHALIKA. Rankin-Selberg convolutions: archimed. theory. in ``PS-F''

 

    [*]  JACQUET, P-S, SHALIKA, Auto. forms on $GL(3)$ I\&II, Ann.Math. 109(1979)169-258

   

    [ ]  JACQUET, P-S, SHALIKA,  Ran.-Sel.Convolutions, Am.J.Math. 105(1983)367-464

 

    [ ]  KAZHDAN,D, PATTERSON,S.  Metaplectic forms, Publ.Math.IHES No.59(1984)

 

    [ ]  KAZHDAN, PATTERSON,  Towards a generalized Shimura  correspondence, Adv. in Math. 60 (1986) 161-234

   

    [*]  KIM, Henry H.  Residual spectrum of $Sp4$.

 

    [*]  KUDLA, S,  Stephen S.,  See-saw dual reductive pairs,   1984

 

    [ ]  KUDLA, RALLIS, S.  Poles of Eisentein series and $L$-functions.  in  "P-SF"

 

    [*]  LABESSE, J.-P.  The present state of the trace formula,  1990

   

    [*]  LI, Jian-Shu, Non-existence of singular cusps forms.Compo.Math 83, 43-51, 1992.

 

    [*]  LI, W. New forms and functional equations, Math Ann 212 (1975)285-315.

 

    [*]  MOEGLIN, C; WALDPURGER, P-L Le spectre residuel de $GL(n)$ (1989)

 

    [*]  MURTY, Ram M, MURTY, Kumar V, SARADHA, N.  Modular forms and the Chebotarev density theorem

   

    [*]  NOVODVORSKY, M.  Autom. $L$-functions for symplectic group $GSp(4)$  in "AFRL"

 

    [ ]  PATTERSON, S; P-S, I. The symmetric $L$-function attached to a cuspidal automorphic representation of $GL(3)$, Math. Ann. 283(1989) 551-572

 

    [ ]  P-S, I.  The converse theorem for $GL(n)$ in   "P-SF"

 

    [*]  P-S, I.  Euler subgoups

 

    [*]  P-S : Complex representations of $GL(2,K)$ for finite field $K$

 

    [ ]  P-S, RALLIS, S.  Rankin triple $L$-functions, Compositio Math. 64 (1987) 31-115

 

    [*]  P-S, RALLIS: A new way to get Euler prod. J.fur.reine.agnew.M.392(1988)110-124

 

    [*]  P-S, NOVODVORSKY, R-S method in the thoery of auto-forms Proceedings of Symposia in Pure Math (30)1977  QA1 A6--

   

    [*]  RIBET, Kenneth, On modular representations of $Gal({\bar Q}/Q)$ arising from modular forms.  Invent.Math 100, 1990, 431-476.

 

    [*]  RODIER, Francois. Whitt. models for admis. rep'ns of reductive $p$-adic split groups. 1973

 

    [*]  RUBENTHALER, Hubert. Une classification des paires duales dans les algebres de Lie reductives  1992

 

    [*]  RUBENTHALER,  Une dualite' de type Howe en dimension infinie  1992

 

    [*]  SAVIN, Gordan, $G(J)\times PGL(2)$. $G(J)$ is automorphic group of Jordan algebra

 

    [*]  SHAHIDI, F.  On the Ramanujan conjecture and finiteness of poles for certain $L$-functions, Ann. Math 127 (1988) 547-584

 

    [ ]  SHAHIDI,   On certain $L$-functions, Amer.J.MAth.103 (1981)297-355

   

    [*]  SHAHIDI, Automorphic $L$-functions: a survey  1990

 

    [*]  SHAKILA, J. Multiplicity one theorem on $GL(n)$, Ann. Math.100(1974)171-193

 

    [*]  SHIMURA, G. On the holomorphy of certain Dirichlet series,Proc. London Math. Soc. (3)31(1975) 79-98

 

    [ ]  SHINTANI, T.  On an explicit formula for class-1 "Whittaker functions" on $GL(n)$ over p-adic fields.  Proc.Japan Acad 51(1976)

 

    [*]  SOUDRY, David   The $L$ and $Y$ factors for generic rep'ns of $GSp(4,k)\times GL(2,k)$.

 

    [*]  SOUDRY,  Uniqeness theorem for representations of GSO(6)and the Strong multiplicity one theorem for generic represen-tation of GSp(4)

 

    [*]  SOUDRY, Rankin-Selberg convolution for $SO_{2l+1}\times GL_n$: local theory.

   

    [ ]  STADE, E.  On explicit integral formulas for $GL(n,R)$-Whittaker fcns, Duke Math.J.1989.

 

    [*]  SWINNERTON-DYER: On $l$-adic rep'ns and congruences for coefficients of modular forms.

 

    [ ]  TADIC's(papers): A.J.Reign Agnew Math (405) 1990, 48-77.

 

    [ ]  TATE, J. Fourier series in number fields and Hecke's zeta-function in Cassels  and Frolich "Algebraic Number Theory" 1967

   

    [*]  TON-THAT, TUONG  Lie group rep'ns and harmonic polynomials with one matrix variable.

 

    [*]  TON-THAT, TUONG   On holomorphic rep'n of symplectic grps. Bull. AMS. 81(6)11-1975.

 

    [ ]  WEIL,  Sur certaines groupes des operateurs unitaires. Acta MAth 111, 143-211

 

    [*]  WEIL, Andre, Sur la formule de Siegel dans la theorie des groupes classiques   1965

 

\noindent =======================================================

 

\noindent

{\bf 5.  General Algebra:}

   

    [ ] BIRKHOFF, Garrett. MAC LANE Saunders. ALgebra. QA266 M254

 

    [ ] BROCHER, Rep'ns of compact Lie group    QA 387 B68

   

    [ ] DIGNE, Francois, MICHEL, Jean.  Rep'ns of finite groups of Lie type  QA387D53(1991)

   

    [ ] EISENBUD, Daiv, HARRIS, Joe. Schemes: the language of modern alg geometry.  QA564 E36, 1992.

 

    [ ] Robert GILMORE, Lie groups, Lie Algebras, and some applicationsQA 387 G54

 

    [ ] Victor KAC, Infinite dimentional Lie algebra QA252.3 K331

 

    [ ] KLEE, Victor, WAGON, Stan ,  QA466 K63 1991 Old and new unsolvedproblems in plan geometry and number theory.

 

    [ ] Helmut KLINGER, Introductory lectures on Siegel modular forms  QA331 K615

 

    [ ] Hans MAASS, Siegel modular forms and Dirichlet series  SLN216

 

    [ ] McDONALD, I. Symmetric functions and a Hall polynomials, Oxford,1979

 

    [ ] M.A. NAIMARK, A.I. STERN, Theory of Groups Representation, QA 171 N 3213

 

    [ ] ONISHCHIK, A.L,  VINBERG, E.B. Lie groups and Alg. groups.QA387 V5613

 

    [ ] RETHERFORD. Hilbert space: Compact operators and the Trace theorem.

           

    [ ] REID, Miles, Undergraduate Algebraic geometry,  QA564 R45 1988

 

    [ ] J-P SERRE,  Complex semisimple Lie Algebra  QA 251 S4713

   

    [ ] J-P SERRE, Linear representation of finite groups. QA 171 S5313

   

    [ ] WILF, Hebert, Generatingfunctionology.  QA353.G44.W55

 

    [ ] Elliptic functions  QA341-345

 

    [ ] Spin geometry QA3 p6 vol 28

   

\noindent =======================================================

 

\noindent

{\bf 6. Books in NUMBER THEORY}

 

    [ ]  APOSTOL,Tom M. Introduction to analytic number theory. QA241 A6

     

        [\&] APOSTOL. Modular functions and Dirichlet series in num. theory.QA241A62

 

        [\&] Z.I. BOREVICH, I.R. SHAFAREVICH,  Number theory,QA 241 B6

 

    [ ]  J W S CASSELS, Lectures on Elliptic Curves. QA567.2 E44 C374

   

    [ ] Henri COHEN, A course in computational algebraic number theory.

            QA 247. C55

 

        [v] Harvey COHN, Advanced number theory.

 

    [ ] CURTIS, Charles W. \& REINER, Irving,  Representation theory of finite groups and associative algebras.  512.89  C978

 

    [\&] Harold DAVENPORT. Multiplicative Number theory. QA241. D32

 

    [ ]  William and Fern ELLISON. Prime numbers.  QA 246 E5613  1985

 

    [ ]  A. FROHLICH, M J TAYLOR, Algebraic Number theory.  QA247 F7577

 

    [ ]  FULTON, William, Algebraic curves.

   

    [ ]  HUA Loo Keng, WANG Yuan, Appl'ns of num. theory to numerical anal. QA297H83

 

    [ ]  Winfred WJ HULSBERGER, Conjectures in arith. alg. geom. QA242.5 H84 1992.

 

    [ ]  Dale HUSEMOLLER, Elliptic curves. QA 567 H897

 

    [ ]  A.A.KARATSUBA, S.S.VORONIN, The Riemann Zeta function. QA246 K37,1992

 

    [*] Nicholas KATZ, Barry MAZUR, Arithmetic moduli of elliptic curves. Study 108

 

    [ ] Frances KIRWAN, Complex Algebraic Curves.  QA 565 K578

 

    [ ] Neal KOBLITZ, Intro. to Elliptic curves and modular forms  QA 567 K63

   

    [*]  Serge LANG. Elliptic curves.

   

    [ ]  Vladimir PLATONOV, Andrei  RAPINCHUK, Algebraic groups and number theory.   QA 247.P718 1992.

 

    [ ]  SAMUEL, Algebraic theory of numbers,  QA247,S24453(15)

 

    [*]  Peter SARNAK, Applications of Modular Forms.

 

     [\&] Carl Ludwig SIEGEL, Lectures on the geometry of numbers, QA241.5 S54 1989

 

    [\&] Joseph SILVERMAN, The arithmetic of elliptic curves.

 

        [\&] E.C. TITCHMARSH, The theory of the Reimann Zeta-function, (D.R. Heath-Brown)   QA246 T44 1986

 

\centerline {------------ papers --------------}

 

    [*]  Rep'n theory and number theory in connection with local Langlands Conjecture. AMS CM86

 

    [*]   A. ESKIN, Z. RUDNICK, P. SARNAK A proof of Siegel's weight formula.

 

    [*] AUREL J. ZAJTA, New solution of the Diophantine  equations A+B=C+D. 

 

    [*]  MURTY,R.M, MURTY,K.V, A variant of the Bombieri-Vinogradov theorem.

 

    [*]  E.A. COUTSIAS, N.D. KAZARINOFF Diophantine Gauss sum.

   

    [*]  MURTY, K.V., RAMAKRISHNAN, Dinakar Period relations and the  Tate conjecture for the Hilbert modular surfaces

 

\noindent =======================================================

 

\noindent {\bf 7. MSRI summer 93}

 

\noindent 0-\quad

     [ ] JACQUET, LANGLANDS,  Automorphic forms on $GL(2)$ Springer LNM 114 (1970)

 

    [ ] GODEMENT, JACQUET, Zeta functions of simple algebras, LNM 260 (1972)

   

    [*] BERNSTEIN, ZELEVINSKY, Representations of the group $GL(n,F)$, where $F$ is a local non-archimedeam field...

 

    [*] GELFAND, GRAEV, P-S, Representation theory and automorphic forms (1968) (Sec. 6 Chapter I), Sec 4.6 chapter III)

 

    [*] GODEMENT, Lectures on Jacquet-Langlands theory, IAS lecture note.

 

    [*] GELBART,  Auto. forms on Adele groups, Annals of Math. studies vol.83(1975)

 

\noindent 1-\quad

    [ ] TATE's thesis, Fourier analysis in number fields and Hecke's zeta-functions, in "Algebraic number theory" Cassels and Frolich (1967)

 

    [ ] RUDIN, Fourier analysis on groups.

 

\noindent 2-\quad

     [*] LANGLANDS, On the functional equations satisfied by Eisenstein series LNM 544

 

    [ ] HARISH-CHANDRA, Automorphic forms on semisimple Lie grps, LNM62 (1968) (chapI.sec4).

   

    [*] BOREL, JACQUET, Autom. forms and autom. rep'ns, in AMS33, part I(1979)

 

    [!] MOEGLIN, WALDSPURGER, Decompo' spectrale et series d'Eisenstein (not pub.)

 

    [*] W. LI, Newforms and functional equations, Math Ann 212 (1075)285-315

 

    [ ] MAASS, * Uber eine neue Art von nichtanalysische automorphen formen und die Bestimmung Dirichletsche Reihen aus Funktionalgleichungen, Math.Ann.121,141-183,1949

 

\hskip 56pt  * Die Differentialgleichungen in der Theorie der elliptische Modulfunktionen, Math Ann. 125 235-263 (1953)

 

    [ ] W. ROELCKE, Automorphe Formen in der hyperbolische Ebene I, Math. Ann. 167, 292-337,(1966).

 

    [l] SELBERG, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, J. Indian Math Soc. 20 (1956)

 

    [*] GODEMENT, The spectral decomposition of cusp forms, in AMS 9 (1966)

 

    [ ] GODEMENT, Analyse spectrale de fonc's modulaires, Seminaire Bourbaki 278(1965)

   

    [ ] LANG, $SL(2,R)$ (1975) (Chapter 12)

 

\noindent 3-\quad

    [ ] HUMPHREYS, Arithmetic groups, Springer LNM 789

 

    [ ] KNESER, Strong Approximation, in AMS 9, 187-196.

 

    [*] FLATH, Decomposition of representations into tensor products,  AMS  33

 

    [*] P-S, Multiplicity One theorems, AMS 33

 

\noindent 4-\quad

    [ ] BRUHAT, Sur les rep'ns induites des groupes de Lie, Bull.Soc.Math.France 84(1956)97-205

 

    [ ] GREEN, The character of finite general linear groups,  Trans.AMS.80(1955)402-477.

 

    [ ] DELIGNE - LUSZTIG,  Representations of reductive groups over finite fields, Ann of Math 103(1976) 103-161.

 

    [ ] WEIL, Sur certains groups d'operateurs unitaires, Acta Math 111(1964) 143-211

 

    [*] HOWE, Theta-series and invariant theory,  AMS 33

 

\noindent 5-\quad

    [ ] MONTGOMERY - ZIPPEN, Topological Transformation groups (1955) Sec 2.3,5

 

    [ ] TUNNEL, Report on the local Langlands conjecture for $GL(2)$ in AMS 33.

    [ ] GELBART,  Automorphic forms and Artin's conjecture. SLN 627.

 

\noindent 7-\quad

    [ ] SOUDRY, $(GSO(6)$ and $GSp(4))$

 

    [ ] P-S: Euler subgroups. \& Multiplicity one thorem in AMS 33

   

    [ ] SHALIKA, Multiplicity one theorem on $GL(n)$ in Ann.Mathvol.100(1974)171-193.

   

    [*] GELFAND, KAZHDAN, Rep'ns of groups $GL(n,K)$, where $K$ local field. in LGR

 

    [ ] F.RIESZ, B.Sz.NAGY, Functional Analysis, chapter VIII

 

    [ ] DUNFORD, SCHWART, Linear operators II, chapters XII and XIII

 

\noindent ===================================================

 

\noindent {\bf 8. Articles collected}

 

    [nm]    1/ New Solutions of the Diophantine Equations $A+B=C+D$.  Aurel J. ZAJTA

 

    [ ] 2/ The Galois Representation Arising from $P'\setminus\{1,0,\infty\}$ and Tate Twists of Even Degree.   Yasutaka IHARA

 

    [ ] 3/ Almost Finite Expansions of Arbitrary Subgroups. Jean-Camille BIRGET, John RHODES

 

    [ ] 4/ Monoids Semigroups and Infinite Groups.  John RHODES

 

    [ ] 5/ Decomposition Techniques for Finite Semigroups. John RHODES, Pascal WEIL

 

    [ ] 6/ Deficient Points on Extensions of Abelian Varieties by Gm Olivier JACEQUINOT, Kenneth A. RIBET

 

    [ ] 7/ Survey of Drinfel's Modules. Pierre DELIGNE, Dale HUSEMOLLER

 

    [ ] 8/ Tangles, Properties P \& Problem of Martin. Steven BLEILER,  Martin SCHARLEMANN

 

    [ ]     9/ Differential Eq'ns in the Spectral Parameter J.J. DUISTERMAAT, F.A. GRUNBAUM

 

    [ ]     10/ Gabal's proof of Property R.  Martin SCHARLEMANN

 

    [nm]    11/ Period Relations and the Tate Conjecture for Hilbert Modular Surfaces.  V. Kumar MURTY, Dinaker RAMAKRISHNAN

 

    [A] 12/ Modular forms at the Chebotarev Density TheoremM. Ram MURTY, V. Kumar MURTY, N. SARADHA

 

    [nm]    13/ A Variant of the Bombieri-Vinogradov Thm.M.Ram MURTY, V.Kumar MURTY

 

    [ ] 14/ Construct'n of Noncommutative Grps by Hopf Algebra Bycross-product. Shahn MAJID

 

    [ ] 15/ Mutation and Volume of Knots in S3.   Daniel RUBERMAN

 

    [nm]    16/ Diophantine Gauss Sum.  E.A. COURTISIAS, N.D. KAZARINOFF

 

    [ ] 17/ Proceedings of NAS

 

    [ ]    18/ 3 Lectures on new infinite constructions in 4-dim manifoldsAndrew CASSON

 

    [ ] 19/ Seminar's textbook - S. BOCHNER, W.T. MARTIN

 

    [A] 20/ The Adjoint Lifting from $SL(2)$ to $PGL(3)$      Yuval Z. FLICHER

 

    [ ] 21/ Math 257, PROF. STALLING, chapter1, Category.

 

    [ ]     22/ The Nonlinear Nature of Gravitation and Gravitational Wave Experiments.   Demetrios CHRISTODOULOU

 

    [ ]     23/ Lecture: Extentions of Modules.

 

    [ ]     24/ A Homomorphism Theorem for Finite Senmigroups.  John RHODES

 

 

ĉ
San Vo,
Apr 17, 2017, 7:57 PM
Comments