Интеллектуальные информационные системы в управлении знаниями

Оглавление

  1. 1 Введение
  2. 2  Глава I. История развития Интеллектуальных информационных систем
  3. 3 Глава II. Интеллектуальные системы и их виды
  4. 4 Глава III. Интеллектуальные информационные системы (ИИС) поддержки принятия решений
  5. 5 Глава IV. Разработка и проектирование ИИС
    1. 5.1 §1. Этапы проектирования ИИС
    2. 5.2  §2. Стадии существования ИИС
    3. 5.3  §3. Инструментальные средства проектирования ИИС
  6. 6   Глава V. Архитектура ИИС
    1. 6.1 §1. Структура интеллектуальной системы
    2. 6.2  §2. Структура    БЗ и    взаимодействие    с   другими    компонентами интеллектуальной системы
    3. 6.3  §3. Модели представления знаний в ИИС
    4. 6.4  §4. Обработка знаний и вывод решений в ИИС
    5. 6.5  §5. Интеллектуальный интерфейс
  7. 7 Глава VI. Классификация ИИС
    1. 7.1 §1. Экспертные системы
    2. 7.2  §2. Вопросно-ответные системы
  8. 8     Глава VII. Перспективы развития ИИС в управлении знаниями
  9. 9  Заключение
  10. 10  Список источников информации

Введение

 

Основное назначение информационных систем в экономике – это своевременное представление необходимой информации ЛПР для принятия им адекватных и эффективным решений при управлении процессами, ресурсами, финансовыми транзакциями, персоналом или организацией в целом. Однако в процессе развития информационных технологий, исследования операций и технологий моделирования, а также с возрастанием потребителей информационно – аналитической поддержки самих ЛПР, все больше проявлялась потребность в системах, не только представляющих информацию, но и выполняющих некоторый ее предварительный анализ, способных давать некоторые советы и рекомендации, осуществлять прогнозирование развития ситуаций, отбирать наиболее перспективные альтернативы решений, т.е. поддерживать решения ЛПР, взяв на себя значительную часть рутинных операций, а также функции предварительного анализа и оценок.

Информационная  система поддержки решений (ИСПР) связывает интеллектуальные ресурсы управленца со способностями и возможностями компьютера для улучшения качества решений. Эти системы предназначены для менеджеров, принимающих управленческие решения в условиях полуструктурированных и слабо определенных задач.

Таким образом, дальнейшее развитие ИСПР привело к созданию интеллектуальной информационной СПР.

Интеллектуальные информационные технологии (ИИТ) (Intellectual information technology, IIT) — это информационные технологии, помогающие человеку ускорить анализ политической, экономической, социальной и технической ситуации, а также - синтез управленческих решений.

Использование ИИТ в реальной практике подразумевает учет специфики проблемной области, которая может характеризоваться следующим набором признаков:

  • качество и оперативность принятия решений;
  • нечеткость целей и институциальных границ;
  • множественность субъектов, участвующих в решении проблемы;
  • хаотичность, флюктуируемость и квантованность поведения среды;
  • множественность взаимовлияющих друг на друга факторов;
  • слабая формализуемость, уникальность, нестереотипность ситуаций;
  • латентность, скрытость, неявность информации;
  • девиантность реализации планов, значимость малых действий;
  • парадоксальность логики решений и др.

ИИТ формируются при создании информационных систем и информационных технологий для повышения эффективности управления знаниями, принятия решений в условиях, связанных с возникновением проблемных ситуаций. В этом случае любая жизненная или деловая ситуация описывается в виде некоторой познавательной модели (когнитивной схемы, архетипа, фрейма и пр.), которая впоследствии используется в качестве основания для построения и проведения моделирования, в том числе - компьютерного.

 

 Глава I. История развития Интеллектуальных информационных систем

 

История Интеллектуальных информационных систем (ИИС) начинается с середины XX века, что связано с развитием Искусственного интеллекта как нового научного направления, появлением термина «Artificial Intelligence».

Предпосылки развития искусственного интеллекта в СССР и России появляются уже в XIX веке, когда Коллежский советник Семён Николаевич Корсаков (1787—1853) ставил задачу усиления возможностей разума посредством разработки научных методов и устройств, перекликающуюся с современной концепцией искусственного интеллекта, как усилителя естественного. В 1832 г. С. Н. Корсаков опубликовал описание пяти изобретённых им механических устройств, так называемых «интеллектуальных машин», для частичной механизации умственной деятельности в задачах поиска, сравнения и классификации. В конструкции своих машин Корсаков впервые в истории информатики применил перфорированные карты, игравшие у него своего рода роль баз знаний, а сами машины по существу являлись предшественниками экспертных систем. «Интеллектуальные машины» позволяли находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания. В СССР работы в области искусственного интеллекта начались в 1960-х гг. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных В. Пушкиным и Д. А. Поспеловым. В 1964 г. была опубликована работа ленинградского логика С. Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов. В 1966 г. В. Ф. Турчиным был разработан язык рекурсивных функций Рефал. До 1970-х гг. в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики.

История ИИТ начинается с середины 1970-х годов и связывается с совместным практическим применением интеллектуальных информационных систем, систем искусственного интеллекта, систем поддержки решений и информационных систем. История ИИТ связана также с развитием трех научных направлений: компьютерной философии, компьютерной психологии и продвинутой компьютерной науки (Advanced computer science) и дополняется прогрессом в создании:

1.      ситуационных центров

2.      информационно-аналитических систем

3.      инструментариев эволюционных вычислений и генетических алгоритмов

4.      систем поддержки общения человека с компьютером на естественном языке

5.      когнитивным моделированием

6.      систем автоматического тематического рубрицирования документов

7.      систем стратегического планирования

8.      инструментариев технического и фундаментального анализа финансовых рынков

9.      систем менеджмента качества

10.  систем управления интеллектуальной собственностью и др.

Искусственный интеллект как наука был основан тремя поколениями исследователей.

В Табл.1.1. представлены ключевые события в истории ИИ и инженерии знаний, начиная с первой работы У. Маккалока и У. Питса в 1943 г. и до современных тенденций в комбинированных усилиях экспертных систем, нечеткой логики и нейронных вычислений в современных системах, основанных на знаниях, способных осуществлять вычисления при помощи слов.

Таблица 1.1.

Краткий перечень главных событий в истории ИИ и инженерии знаний

 

Период

События

Рождение ИИ

(1943-1956)

-                   У. Маккалок и У. Питс:

Логическое исчисление идей, присущих нервной деятельности, 1943.

-                   А.Тьюринг: Вычислительная машина и интеллект, 1950.

-                   К. Шеннон: Программирование компьютера для шахматной игры, 1950.

Подъем ИИ

(1956- конец 1960-х)

-                   Д. Маккарти: LISP – язык программирования искусственного интеллекта.

-                   М. Куллиан: Семантические сети для представления знаний,1966.

-                   А. Ньюэл и Г. Саймон: Универсальный решатель задач (GPS),1961.

-                   М. Минский: Структуры для представления знаний (фреймы), 1975.

Открытие и разработка экспертных систем (начало 1970-х – середина 1980-х).

-                   Э. Фейгенбаум, Б. Букханан и др. (Стэндфордский университет): Экспертная система DENDRAL

-                   Э. Фейгенбаум, Э. Шортлиф: Экспертная система MYCIN

-                   Стэндфордский исследовательский центр: Экспертная система PROSPECTOR

-                   А. Колмероэ, Р. Ковальски и др. (Франция): Язык логического программирования PROLOG.

Возрождение искусственный нейронных сетей (1965 и далее)

-                   Дж. Хопфилд: Нейронные сети и физические с эмержентными коллективными  вычислительными способностями, 1982.

-                   Т. Кохонен: Самоорганизующиеся топологически правильные карты, 1982.

-                   Д. Румельхарт и Д. Макклеланд: Распределенная параллельная обработка данных, 1986.

Эволюционное вычисление (начало 1970-х и далее)

-                      И. Рехенберг: Эволюционные стратегии – оптимизация технических систем по принципам биологической информации, 1973.

-                      Дж. Холланд: Адаптация в естественных и искусственных системах, 1975.

-                      Дж. Коза: Генетическое программирование: компьютерное программирование средствами естественного отбора, 1992.

-                      Д.Фогель: Эволюционное вычисление – направление новой философии в машинном интеллекте, 1995.

Нечеткие множества и нечеткая логика (середина 1960-х и далее)

-                      Л. Заде: Нечеткие множества, 1965.

-                      Л. Заде: Нечеткие алгоритмы, 1969.

-                      Э. Мамдани: Применение нечеткой логики в приближенном рассуждении с использованием лингвистического синтеза, 1977.

-                      М. Суджено: Нечеткий логический вывод (алгоритм Такаги-Суджено), 1985

Вычисления при помощи слов (конец 1980-х и далее)

-                      А. Нейгоца: Экспертные системы и нечектие системы, 1985.

-                      Б. Коско: Нейронные сети и нечеткие системы, 1992.

-                      Б. Коско: Нечеткое мышление, 1993.

-                      Р. Ягер и Л. Заде: нечеткие множества, нейронные сети и мягкие вычисления, 1994.

-                      Б. Коско: Нечеткая инженерия,  1996.

-                      Л. Заде: Вычисления при помощи слов, 1996.

Таким образом, исторически разработки в области ИИ велись в двух основных направлениях:

-    первое направление связано с попытками разработки ин­теллектуальных машин путем моделирования их биологического прототипа - человеческого мозга. Сейчас это направление возрож­дается на основе развития современных аппаратных и программ­ных средств (микрочипы на основе нечеткой логики, распределенные многопроцессорные системы, многоагентные системы, мягкие вычисления, генетические алгоритмы и нейронные сети и т.д.).

-    второе направление связано с разработками методов, приемов, специализированных устройств и программ для компью­теров, обеспечивающих решение сложных математических и ло­гических задач, позволяющих автоматизировать отдельные ин­теллектуальные действия человека (системы, основанные на знаниях, экспертные системы, прикладные интеллектуальные системы).

Эти два направления как бы определяют программу минимум и программу максимум, между которыми и лежит область сегодняшних исследований и разработок систем ИИ. Работы по разработке программного и аппаратного обеспечения ИИ выделены в отдельную область.

Глава II. Интеллектуальные системы и их виды

 

Интеллектуальная система (ИС, intelligent system) — это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока — базу знаний, решатель и интеллектуальный интерфейс.

Со всем процессом разработки интеллектуальных информационных систем в целом и ЭС в частности тесно связана Инженерия знаний. Это методология ЭС, которая охватывает методы добычи, анализа и выражения в правилах знаний экспертов для формирования базы правил. Развитие ЭС создало инженерию знаний – процесс построения интеллектуальных систем. Она представляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Главными элементами инженерии знаний являются использование операций типа обобщение, генерация гипотез для индуктивных выводов, подготовка новых программ самими компьютерными программами и т.д. Слово engineering  в английском означает  искусная обработка предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком, либо компьютером (программой), также можно назвать инженерией знаний.

 Виды интеллектуальных систем:

  1. Расчетно-логическая система

К расчетно-логическим системам относят системы, способные решать управленческие и проектные задачи по декларативным описаниям условий. При этом пользователь имеет возможность контролировать в режиме диалога все стадии вычислительного процесса. Данные системы способны автоматически строить математическую модель задачи и автоматически синтезировать вычислительные алгоритмы по формулировке задачи. Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования

  1. Рефлекторная интеллектуальная система

Рефлекторная система - это система, которая формирует вырабатываемые специальными алгоритмами ответные реакции на различные комбинации входных воздействий. Алгоритм обеспечивает выбор наиболее вероятной реакции интеллектуальной системы на множество входных воздействий, при известных вероятностях выбора реакции на каждое входное воздействие, а также на некоторые комбинации входных воздействий. Данная задача подобна той, которую реализуют перцептроны. Перцептро́н, или персептрон (perceptron) — математическая и компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1957 г. и реализованная в виде электронной машины «Марк-1» в 1960 г. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером. Несмотря на свою простоту, перцептрон способен обучаться и решать довольно сложные задачи. Рефлекторные программные системы применяются к следующим задачам: естественно-языковой доступ к базам данных; оценки инвестиционных предложений; оценки и прогнозирования влияния вредных веществ на здоровье населения; прогнозирования результатов спортивных игр.

  1. Интеллектуальная информационная система

Интеллектуальная информационная система (ИИС, intelligent system) — система, основанная на знаниях.

  1. Гибридная интеллектуальная система

Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС — это совокупность:

  • аналитических моделей
  • экспертных систем
  • искусственных нейронных сетей
  • нечетких систем
  • генетических алгоритмов
  • имитационных статистических моделей

Междисциплинарное направление «гибридные интеллектуальные системы» объединяет ученых и специалистов, исследующих применимость не одного, а нескольких методов, как правило, из различных классов, к решению задач управления и проектирования.

 

Глава III. Интеллектуальные информационные системы (ИИС) поддержки принятия решений

 ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека, например возможность поиска информации в режиме продвинутого диалога на естественном языке.

ИИС – это компьютерная система, состоящая из 5 основных взаимодействующих компонентов: языковой подсистемы (механизм обеспечения связи между пользователем и другими компонентами ИСПР), информацией подсистемы (хранилище данных и средств их обработки), подсистемы управления знаниями (хранилище знаний о проблемной области, таких как процедуры, эвристики и правила, и средства обработки знаний), подсистемы управления моделями и подсистемы обработки и решения задач (связующее звено между другими подсистемами).

 Классификация задач, решаемых ИИС:

  • Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
  • Диагностика. Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность — это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») диагностирующей системы.
  • Мониторинг. Основная задача мониторинга — непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы — «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.
  • Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов—чертёж, пояснительная записка и т.д. Основные проблемы здесь — получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и в ещё большей степени перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.
  • Прогнозирование. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
  • Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
  • Обучение. Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

  • Управление. Под управлением понимается функция организованной системы, поддерживающая определенный режим деятельности. Такого рода ЭС осуществляют управление поведением сложных систем в соответствии с заданными спецификациями.
  • Поддержка принятия решений. Поддержка принятия решения — это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения. Эти ЭС помогают специалистам выбрать и/или сформировать нужную альтернативу среди множества выборов при принятии ответственных решений.

В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или подпроблем. Задачами анализа являются: интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относятся проектирование, планирование, управление. Комбинированные: обучение, мониторинг, прогнозирование.

 

Глава IV. Разработка и проектирование ИИС

§1. Этапы проектирования ИИС

 

Существуют различные взгляды на определение числа этапов проектирования интеллектуальных систем. Это зависит от многих факторов, в част­ности от характера функций будущей интеллектуальной системы, области использова­ния, наличия развитых инструментальных средств и т. д.

Процесс построения систем ИИ можно раз­делить на пять этапов (см.Рис.4.1.1.).

 


Рис.4.1.1. Этапы проектирования ИИ

1. Идентификация определения задач и идентификация их характеристик. Разра­батывается техническое задание на проектируемую систему, ограничивается круг пользователей системы.

2. Выделение главных концепций предметной области, которые отражают знания круга экспертов. Инженер знаний определяет формальные средства представления знаний и процедуры получения решений. Выявля­ются и формулируются понятия, определяющие выбор характерной схемы представления знаний эксперта о предметной области. Основным источником знаний о проблемной области является человек-эксперт, книги, технологические описания, инструк­ции, документы, методы «мозгового штурма», методы автоматизированного запол­нения БЗ. Другим важным источником знаний является Интернет (традиционный поиск необходимой информации и знаний, а также интеллектуальные агенты (программные роботы)).

3 . Выбор формализма представления знаний и определение механизма вывода решений. Разработанная структура для представления знаний является основой для реализации следующего этапа — непосредственного построения базы знаний системы.

4.  Выбор или разработка языка представления знаний. После того как правила сформулированы и представлены на выбранном языке представления, они заносятся инженером знаний в БЗ.

5.  Тестирование системы путем решения кон­кретных проверочных задач.

Этапы создания интеллектуальных систем не являются четко очерченными и под­робно регламентированными. Между некоторыми из них трудно провести временную и содержательную границу.  Они  в какой-то степени приблизительно описывают процесс проектирования интеллектуальных систем.

 §2. Стадии существования ИИС

 

Стадии существования интеллектуальных систем (или жизненные циклы системы) соответствуют уровню готовности системы, завершенности ее функциональных возможностей, реализуемых инструментарием. Определяют следующие стадии существования интеллектуальных систем: демонстрационный прототип; исследовательский прототип; действующий прототип; промышленная система; коммерческая система.

Демонстрационный прототип — это состояние разработанности системы, когда она решает некоторую часть проблемных задач. При разработке демонстрационного прототипа стремятся достичь противоречивых целей: с одной стороны, система на стадии демон­страционного прототипа должна выполнять задачи, которые бы до­вольно полно характеризовали ее возможности, с другой стороны, эту стадию стремятся пройти как можно быстрее. Работа демон­страционного прототипа может быть признана удовлетворительной, если он оперирует минимальным набором правил, достаточным для решения некоторых задач. Время разработки колеблется от двух месяцев до года.

Исследовательский прототип проектируется в течение 1,5 ...2 лет. На этой стадии развития системы ее БЗ уже содержит не­сколько сотен правил, которые достаточно адекватно описывают предметную область.

Действующий прототип интеллектуальных систем осуществляет качественный вывод решений на расширившемся пространстве правил, достигшем порядка 1000. Поэтому для вывода сложных решений требую большие ресурсы времени и памяти.

Промышленные системы обеспечивают высокий уровень качества решения проблем предметной области при значительных уменьшениях времени решения и требуемой памяти. Количество правил возрастает не столь значительно по сравнению с действу­ющим прототипом. На этой стадии происходит преобразование дей­ствующего прототипа за счет расширения числа правил и совер­шенствования интеллектуальных систем на базе использования более эффективных, инструментальных средств. Это требует примерно 3 ... 4 года.

Коммерческая  система  предназначена  в  основном  для  продажи. Она является либо проблемно-ориентированной, либо проблемно-независимой.

 §3. Инструментальные средства проектирования ИИС

 Несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, можно выделить два основных подхода к разработке ИИ:

  • нисходящий (Top-Down AI), семиотический — создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.;
  • восходящий (Bottom-Up AI), биологический — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.

Для разработки ИИС раньше использовались логические языки (Пролог, Лисп и т. д.), а сейчас используются различные процедурные языки. Логико-математическое обеспечение разрабатывается как для самих модулей систем, так и для состыковки этих модулей. Однако в области лингвистики тоже существует множество проблем, например, для обеспечения работы системы в режиме диалога с пользователем на естественном языке необходимо заложить в систему алгоритмы формализации естественного языка, а эта задача оказалась куда более сложной, чем предполагалось на заре развития интеллектуальных систем. Еще одна проблема — постоянная изменчивость языка, которая обязательно должна быть отражена в системах искусственного интеллекта.

На проектирование и создание одной экспертной системы ранее требовалось 20-30 человек-лет. В настоящее время имеется ряд средств, ускоряющих создание. Эти средства называют инструментальными или инструментарием. Использование инструментальных средств разработки экспертных систем сокращает время, затрачиваемое на их создание, в 3-5 раз.

Инструментальное средство разработки экспертных систем – это язык программирования, используемый инженером знаний и/или программистом для построения экспертной системы. Этот инструмент отличается от обычных языков программирования тем, что обеспечивает удобные способы представления сложных высокоуровневых понятий.

По своему назначению и функциональным возможностям инструментальные программы, применяемые при проектировании экспертных систем, можно разделить на четыре большие категории:

1. Оболочки экспертных систем

Системы этого типа создаются, как правило, на основе какой-нибудь экспертной системы, достаточно хорошо зарекомендовавшей себя на практике. При создании оболочки из системы-прототипа удаляются компоненты, слишком специфичные для области ее непосредственного применения, и оставляются те, которые не имеют узкой специализации. Примером может служить система EMYCIN, созданная на основе прошедшей длительную «обкатку» системы MYCIN. В EMYCIN сохранен интерпретатор и все базовые структуры данных – таблицы знаний и связанные с ними механизм индексации. Оболочка дополнена специальным языком, улучшающим читабельность программ, и средствами поддержки библиотеки типовых случаев и заключений, выполненных по ним экспертной системой.

2. Языки программирования высокого уровня

Инструментальные средства этой категории избавляют разработчика от необходимости углубляться в детали реализации системы – способы эффективного распределения памяти, низкоуровневые процедуры доступа и манипулирования данными. Одним из наиболее известных представителей таких языков является OPS5. Этот язык прост в изучении и предоставляет программисту гораздо более широкие возможности, чем типичные специализированные оболочки. Следует отметить, что большинство подобных языков так и не было доведено до уровня коммерческого продукта и представляет собой скорее инструмент для исследователей. Осуществляется программирование на обычных языках (Паскаль, Си и др.), программирование на специализированных языках, применяемых в задачах искусственного интеллекта (LISP, FRL, SmallTalk и др.) и др.

3. Среда программирования, поддерживающая несколько парадигм

Средства этой категории включают несколько программных модулей, что позволяет пользователю комбинировать в процессе разработки экспертной системы разные стили программирования. Среди первых проектов такого рода была исследовательская программа LOOP, которая допускала использование двух типов представления знаний: базирующегося на системе правил и объектно-ориентированного. На основе этой архитектуры во второй половине 1980-х годов было разработано несколько коммерческих программных продуктов, из которых наибольшую известность получили KEE, KnowledgeCraft и ART. Эти программы предоставляют в распоряжение квалифицированного пользователя множество опций и для последующих разработок, таких как КАРРА и CLIPS, и стали своего рода стандартом. Однако освоить эти языки программистам далеко не так просто, как языки, отнесенные к предыдущей категории.

4. Дополнительные модули

Средства этой категории представляют собой автономные программные модули, предназначенные для выполнения специфических задач в рамках выбранной архитектуры системы решения проблем.

  Глава V. Архитектура ИИС

§1. Структура интеллектуальной системы

 В зависимости от характера выполняемых функций и области действий эксперты выполняют несколько характерных задач, ко­торые являются типичными: интерпретация, плани­рование, управление, проектирование, прогнозирование, диспетчирование и мониторинг, диагностика. Главное, эксперт спосо­бен обновлять свои знания (т. е. обучаться), объяснять действия, обосновывать решения, прогнозировать развитие ситуаций, актив­но взаимодействовать с внешней средой и воспринимать информа­цию различного характера, получать решения на основе имею­щихся знаний, хранить в памяти необходимую информацию и фактографические данные. Анализ задач послужит ориентиром при рассмотрении архитектуры ИС, осно­ванных на знаниях.

Таким образом, чтобы создать систему, работающую со зна­ниями и способную в какой-то мере заменить эксперта или по­мочь ему в принятии решений при управлении производством, не­обходимо стремиться заложить в архитектуру нашей системы возможности по реализации названных функций.

На Рис.5.1.1.. представлена обобщенная структура и компоненты интеллектуальной системы, а также ее окружение.

                   

Рис.5.1.1. Структура интеллектуальных систем.

 §2. Структура    БЗ и    взаимодействие    с   другими    компонентами интеллектуальной системы

 

Структурно БЗ можно организовать в ви­де двух основных подбаз - базы правил (БП) и базы данных (БД).

В БД хранится фактографическая информация о решаемых на объекте задачах и данные, которые относятся к указанной предметной области. БП определяет отношения между элементами данных, хранящихся в БД, на основе моделей пред­ставления знаний о предметной области, а также способы активи­зации этих знаний.

Таким образом, очень обобщенно можно говорить о двух уров­нях представления знаний: первый уровень — фактографическая информация, данные; второй уровень — описания, отношения, правила и процедуры, определяющие способ манипулирования фактографической информации.

Помимо знаний о предметной области в БЗ должны храниться и другие типы знаний: модель мира системы, знания о пользова­теле, целях и т. д. Эти знания в основном содержатся на втором уровне представления в виде блоков или органических частей БП.

Во многих интеллектуальных системах, особенно работающих в реальном времени, реализуется уровень метазнаний, кото­рый необходим для обеспечения рационализации процессов оперирования знаниями в БЗ, уменьшения области поиска решения, сокращения время обработки ин­формации. Метазнания - это зна­ния системы о себе, т. е. знания о своих знаниях, их структуре и о принципах своего функционирования. На основе этих знаний на уровне метазнаний (в бло­ке метазнаний) среди имею­щегося набора стратегий поиска определяется наибо­лее эффективная.



 











Рис.5.2.1.  Обобщенная  структура  БЗ

При варианте структуры БЗ, представленном на Рис.5.2.1., функ­ции интерпретатора правил, рациональным образом реализующе­го механизм вывода решений, по существу выполняет верхний уровень БЗ - метазнания (или блок метазнаний).

Необходимо подчеркнуть, что существуют различные вариан­ты как организации самой БЗ, так и взаимодействия БЗ с дру­гими компонентами ИС.

На Рис.5.2.2. приведен фрагмент системы ИИ, отражающий вза­имодействие БЗ с основными модулями системы при поиске и ге­нерации знаний. В БЗ представлена как фактографическая информация, так и правила, или эвристики.

              

Рис.5.2.2. Структура взаимодействия БЗ с основными компонентами ИИС для продукционных систем

Вывод решения либо ге­нерация новых правил и знаний осуществляется с помощью блока вывода, который взаимодействует с метауровнем БЗ при интерпретации правил и данных БЗ.

Решение задачи и работа с правилами и данными осуществля­ются в специальном блоке - рабочей области. В рабочей области представляются описания запроса - или решаемой задачи, данные и правила из БЗ, процедуры или стратегия механизма вывода.

При использовании наиболее распространенных в настоящее время продукционных систем представления знаний возможен ва­риант структурной и функциональной организации основных ком­понентов системы, представленный на Рис.5.2.3. 




 

Рис.5.2.3. Структура взаимодействия БЗ с основными компонентами ИС для продукционных систем.

 §3. Модели представления знаний в ИИС

 

Важным вопросом при создании БЗ является выбор способа представления знаний. Цель представления знаний — организация необходимой информации в такую форму, чтобы программа искусственного интеллекта име­ла легкий доступ к ней для принятия решений, планирования, узнавания объектов и ситуаций, анализа сцен, вывода заключений и других когнитивных функций.

Представление знаний в интеллектуальных системах осуществляется на основе:

1. Фреймов и семантических сетей

2. Продукционных и логических моделей

3. Моделей представления и формализации нечетких знаний

4. Нейронных сетей.

Знания в ИИС можно представить с помощью моделей двух типов: декларативных и процедурных. К типовым декларативным моделям относят семантические сети и фреймы, а типовым процедурным моделям – исчисления предикатов, системы продукций, нечёткая логика. На практике редко удаётся обойтись рамками одной модели при разработке ИИС, поэтому представление знаний получается сложным.

Семантическая сеть представляет собой ориентированный граф, вершинами которого являются информационные единицы, имеющие индивидуальные имена. В качестве информационной единицы могут выступать события, действия, обобщённые понятия или свойства объектов. Вершины графа соединяются дугой, если соответствующие информационные единицы находятся в каком-либо отношении.

Фрейм представляет собой структуру данных, дающую целостное представление об объектах, явлениях и их типах в виде абстрактных образов. Структура фрейма записывается в виде списка свойств (слотов). Каждый фрейм имеет

специальный слот, заполненный наименованием представляемой сущности, а другие заполнены значениями разнообразных атрибутов, ассоциирующихся с объектом.

Логика предикатов является расширением логики высказываний. Основным объектом здесь является переменное высказывание (предикат), истинность и ложность которого зависят от значения его переменных. Язык логики предикатов является более мощным по сравнению с языком логики высказываний. Он пригоден для формализации понятий многих проблемных областей.

Продукционная модель, или модель, основанная на правилах, позволяет представить знания в виде предложений типа ЕСЛИ (условие), ТО (действие).

Количественные данные (знания) могут быть неточными. Для учёта неточности лингвистических знаний используется формальный аппарат нечёткой алгебры. Одно из главных понятий в нечёткой логике – это понятие лингвистической переменной, которое определяется через нечёткие множества. Нечёткие множества позволяют учитывать субъективные мнения отдельных экспертов.

Нейронные сети – это направление компьютерной индустрии, в основе которого лежит идея создания ИИ по образу и подобию человеческого мозга. Существует большое количество различных алгоритмов обучения нейросетей, среди которых успешным признаётся идея генетических алгоритмов, которая состоит в имитации природных оптимизационных процессов, происходящих при эволюции живых организмов.

 §4. Обработка знаний и вывод решений в ИИС

           Основными методами обработки знаний и вывода решений в ИИС являются:

I. Методы вывода и поиска решений в продукционных системах

1. Методы вывода на основе прямой и обратной цепочек

2. Общие методы поиска решений в пространстве состояний

-Методы перебора

-Поиск в глубину

-Поиск в ширину

-Поиск на основе стоимости дуг (Нахождение пути минимальной стоимости)

-Поиск с возвратом (бэктрекинг)

3. Эвристические методы поиска  (для определения направления поиска используется оценочная функция)

4. Методы редукции

5. Методы поиска решений в больших пространствах состояний

- Методы порождения и проверки

- Методы последовательного уточнения сверху

- др.

II. Выводы на фреймах и в семантических сетях

III. Дедуктивные методы поиска решений

IV. Поиск решений в условиях неопределенности

1. Вероятностный вывод

2. Вывод на основе теории уверенности

3. Нечеткая логика и приближенные рассуждения

V. Вывод в нейронных сетях

 §5. Интеллектуальный интерфейс

 Термин «пользовательский интерфейс» охватывает все аспекты взаимодействия между пользователем и ИИС. Он включает не только техническое и программное обеспечение, но также факторы, которые связаны с обеспечением использования, доступности и человеко-машинного взаимодействия. Развитие способностей и возможностей комфортного и качественного взаимодействия пользователя с системой, которая организует, предоставляет этот компонент, позволяет говорить об интеллектуальном интерфейсе. Подсистема интеллектуального интерфейса управляется программным обеспечением, называемым управляющая система интеллектуального интерфейса.

Виды интерфейса.

Взаимодействие на основе меню. При этом виде взаимодействия пользователь выбирает позицию или пункт из списка возможных выборов (меню) для того, чтобы функция была выполнена. Меню появляются в логическом порядке, начиная с главного меню и продвигаясь к локальным меню. Пункты меню могут включать команды, которые появляются в отдельных локальных меню или в меню с не командными пунктами. Меню может оказаться утомительным и продолжительным по времени, когда анализируются сложные ситуации, т.к. это может потребовать несколько меню для построения или использования системы и пользователь  должен перемещаться назад и вперед меню.

Командный язык. При это виде пользователь вводит команды. Многие команды включают комбинации глагол-существительное. Некоторые команды могут исполняться с функциональными ключами. Другим способом упрощения команд является использование макросов. Команды могут также вводиться голосом.

Вопросно – ответный вид интерфейса начинается с вопросов компьютера пользователю. Пользователь отвечает на вопросы фразой или предложением (или выбором пункта меню). Компьютер может подсказывать пользователю для прояснения или дополнительного ввода информации. В некоторых применениях порядок вопросов может быть обратным: пользователь задает вопросы, а компьютер дает ответы.

Формирование взаимодействия. Пользователь вводит данные или команды в обозначенные формы (поля). Заголовки формы (или отчета, или таблицы) служат подсказками для входа. Компьютер может представлять какой-то выход как результат, и пользователь может быть спрошен о продолжении интерактивного процесса.

Естественный язык. Взаимодействие человек – компьютер, которое подобно диалогу человека с человеком называется естественным  языком. Сегодня диалог на естественном языке выполняется главным образом посредством клавиатуры. Такой диалог будет проводиться в будущем с использованием голоса для ввода и вывода информации. Главным  ограничением использования естественного языка является по существу неспособность компьютера понимать естественный язык. Однако, достижения ИИ все больше повышают уровень диалога на естественном языке.

Графический пользовательский интерфейс. В графическом пользовательском интерфейсе объекты обычно представляются как пиктограммы (или символы) и пользователь непосредственно ими манипулирует. Новейшие операционные системы компьютеров и их приложения исключительно основаны на графике.

Глава VI. Классификация ИИС

 ИИС могут размещаться на каком-либо сайте, где пользователь задает системе вопросы на естественном языке (если это вопросно-ответная система) или, отвечая на вопросы системы, находит необходимую информацию (если это экспертная система). Но, как правило, ЭС в интернете выполняют рекламно-информационные функции (интерактивные баннеры), а серьезные системы (такие, как, например, ЭС диагностики оборудования) используются локально, так как выполняют конкретные специфические задачи.

Интеллектуальные поисковики отличаются от виртуальных собеседников тем, что они достаточно безлики и в ответ на вопрос выдают некоторую выжимку из источников знаний (иногда достаточно большого объема), а собеседники обладают «характером», особой манерой общения (могут использовать сленг, ненормативную лексику), и их ответы должны быть предельно лаконичными (иногда даже просто в форме смайликов, если это соответствует контексту).

ИИС:

  • Экспертные системы
    • Собственно экспертные системы (ЭС)
    • Интерактивные баннеры (web + ЭС)

 

  • Вопросно-ответные системы (в некоторых источниках «системы общения»)
    • Интеллектуальные поисковики (например, система Старт)
    • Виртуальные собеседники
    • Виртуальные цифровые помощники

 

§1. Экспертные системы

Экспертная система (ЭС, expert system) — компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Это вычислительная система, в которую включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Такие системы могут использоваться не экспертом для улучшения их способностей и возможностей в решении задач определенного класса в конкретной предметной области. ЭС могут быть использованы для распространения источников редких знаний. Эти системы могут иметь значительное влияние как на деятельность таких профессиональных консультантов, как финансовые аналитики, юристы, аудиторы и др., так и на организации и их менеджмент.

Внутри экспертной системы нет заранее заданного дерева вопросов, каждый следующий вопрос выбирается исходя из ответов на все предыдущие. Это позволяет исключить лишние вопросы и не выдавать варианты ответа, которые не приведут к каким-либо результатам. Отсутствие фиксированного дерева позволяет пользователю задавать приоритет вопросов, выбирая наиболее важные для себя аспекты в процессе поиска. В любой момент можно снова вернуться к вопросу и выбрать другой ответ без необходимости снова отвечать на остальные вопросы.

Экспертные системы имеют одно большое отличие от других ИИС: они не предназначены для решения каких-то универсальных задач, как например нейронные сети или генетические алгоритмы. Экспертные системы предназначены для качественного решения задач в определенной разработчиками области, в редких случаях – областях.

 

Рис.6.1.1. Экспертная система

Технологию построения ЭС (см. Рис.6.1.2.) часто называют инженерией знаний.

 Рис.6.1.2. Процесс построения ЭС.

Характерными чертами ЭС являются:

  • четкая ограниченность предметной области;
  • способность принимать решения в условиях неопределенности;
  • способность объяснять ход и результат решения понятным для пользователя способом;
  • четкое разделение декларативных и процедурных знаний (фактов и механизмов вывода);
  • способность пополнять базу знаний, возможность наращивания системы;
  • результат выдается в виде конкретных рекомендаций для действий в сложившейся ситуации, не уступающих решениям лучших специалистов;
  • ориентация на решение неформализованных (способ формализации пока неизвестен) задач;
  • алгоритм решения не описывается заранее, а строится самой экспертной системой;
  • отсутствие гарантии нахождения оптимального решения с возможностью учиться на ошибках.

 Классификации ЭС

·         Собственно Экспертные системы

  • Интерактивные баннеры (web + ЭС)

Интерактивные говорящие баннеры — это инфы или экспертные системы, предназначенные для размещения на внешних ресурсах.

Преимущества интерактивных баннеров:

  • Повышенная привлекательность для потребителей — с необычным баннером хочется пообщаться.
  • Продолжительный контакт с пользователем. Среднее время общения с баннером может составлять около 3 минут.
  • Баннер может вести разных собеседников на разные страницы, в соответствии с их запросами и потребностями.

Классификация ЭС по связи с реальным временем:

  • Статические ЭС - это ЭС, решающие задачи в условиях не изменяющихся во времени исходных данных и знаний.
  • Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени.
  • Динамические ЭС - это ЭС, решающие задачи в условиях изменяющихся во времени исходных данных и знаний.

 

Структура ЭС:

На Рис.6.1.3. ниже представлена каноническая структура экспертной системы динамического типа:

Рис.6.1.3. Структура ЭС

  • механизм логического вывода, называемый также интерпретатором, решателем;
  • рабочую память (РП), называемую также рабочей базой данных (БД);
  • базу знаний (БЗ);
  • подсистему приобретения и пополнения знаний;
  • подсистему объяснения;
  • подсистему диалога;
  • подсистему взаимодействия с внешним миром.

Механизм логического вывода (МЛВ) предназначен для получения новых фактов на основе сопоставления исходных данных из рабочей памяти и знаний из базы знаний. Механизм логического вывода реализует алгоритмы прямого и/или обратного вывода и формально может быть представлен четверкой:

Механизм вывода является мозгом ЭС, его также называют управляющая структура  или интерпретатор правил (в ЭС, основанных на правилах).

Эта компонента является в основном компьютерной программой, которая обеспечивает методологию для рассуждения об информации в БЗ и в рабочей области, а также для формулирования заключений. Она обеспечивает указания о том, как использовать знания системы при реализации аренды (расписания запланированных действий в рабочей области), которая организует и управляет шагами, предпринимаемыми для решения задачи.

Механизм вывода имеет два главных элемента:

-  Интерпретатор, который выполняет выбранные позиции аренды, используя соответствующие правила БЗ.

-  Планировщик, который поддерживает управление агендой. Он оценивает результаты используемых правил вывода в  свете их приоритетов или других критериев в агенде.

Рабочая память предназначена для хранения исходных и промежуточных фактов решаемой в текущий момент задачи. Как правило, размещается в оперативной памяти ЭВМ и отражает текущее состояние предметной области в виде фактов с коэффициентами уверенности (КУ) в истинности этих фактов.

Ценность всей экспертной системы как законченного продукта на 90% определяется качеством созданной базы знаний.  Как правило, БЗ ЭС содержит факты (статические сведения о предметной области) и правила — набор инструкций, применяя которые к известным фактам можно получать новые факты. В рамках логической модели баз данных и базы знаний записываются на языке Пролог— язык и система логического программирования) с помощью языка предикатов для описания фактов и правил логического вывода, выражающих правила определения понятий, для описания обобщенных и конкретных сведений, а также конкретных и обобщенных запросов к базам данных и базам знаний.

Подсистема приобретения и пополнения знаний автоматизирует процесс наполнения экспертной системы знаниями, осуществляемый пользователем-экспертом, и адаптации базы знаний системы к условиям ее функционирования. Адаптация экспертной системы к изменениям в предметной области реализуется путем замены правил или фактов в базе знаний.

Подсистема объяснения объясняет, как система получила решение задачи (или почему она не получила решения) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. Возможность объяснять свои действия является одним из самых важных свойств экспертной системы, так как:

  • повышается доверие пользователей к полученным результатам;
  • облегчается отладка системы;
  • создаются условия для пользователей по вскрытию новых закономерностей предметной области;
  • объяснение полученных выводов может служить средством поиска точки в парето-оптимальном множестве решений.

В настоящее время на практике все СО реа­лизуются на одних и тех же принципах в основном двумя спосо­бами:

- фиксацией событий и состояний с помощью заготовленных текстов на естественном языке;

- трассировкой рассуждений, обратным развертыванием дерева целей с указанием подцелей.

При реализации каждого из этих способов предварительно выделяются ситуации, факты и узлы перехода в новые состояния, требующие объяснений. Им ставится в соответствие некоторый текст объяснения.

Структура экспертной системы была бы неполной без подсистемы диалога. Подсистема диалога ориентирована на организацию дружественного интерфейса со всеми категориями пользователей как в ходе решения задач, так и в ходе приобретения знаний и объяснения результатов работы.

Факты и правила в экспертной системе не всегда либо истинны, либо ложные. Иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется «коэффициентом доверия».

Коэффициент доверия – это число, которое означает вероятность или степень уверенности, с которой можно считать данный факт или правило достоверным или справедливым. Данный коэффициент является оценкой степени доверия к решению, выдаваемому экспертной системой. Такая оценка, например, может проводиться по схеме Шортлиффа.

 Режимы функционирования ЭС:

  1. Режим ввода знаний — в этом режиме эксперт с помощью инженера по знаниям посредством редактора базы знаний вводит известные ему сведения о предметной области в базу знаний ЭС.
  2. Режим консультации — пользователь ведет диалог с ЭС, сообщая ей сведения о текущей задаче и получая рекомендации ЭС. Например, на основе сведений о физическом состоянии больного ЭС ставит диагноз в виде перечня заболеваний, наиболее вероятных при данных симптомах.

Табл.6.1.1.

Основные классы решения задач, решаемые ЭС

Класс

На решение какой задачи направлена

Интерпретация

Выявление описаний ситуации из наблюдений

Предсказание

Выявление похожих последствий в данной ситуации.

Диагностика

Выявление неисправности системы через наблюдения.

Проектирование

Конфигурирование и разработка объектов, удовлетворяющих определенным требованиям.

Планирование

Разработка планов для достижения целей.

Мониторинг

Сравнение наблюдений с планами, сигнализируя об отклонениях и исключениях.

Отладка

Выявление и устранение неисправностей.

Управление

Интерпретирование, предсказывание восстановление и мониторинг поведения системы.

 Некоторые ЭС принадлежат к двум или более из этих категорий. Дадим краткое описание каждой их этих категорий.

Системы интерпретации выявляют описания ситуации из наблюдений. Это категория включает наблюдения, понимание речи, анализ образов, интерпретацию сигналов и многие другие виды интеллектуального анализа. Система интерпретации объясняют наблюдаемые данные путем присвоения им символических значений, описывающих ситуацию.

Системы предсказания включают прогнозирование погоды, демографические предсказания, экономическое прогнозирование, оценки урожайности, а также военное, маркетинговое и финансовое прогнозирование.

Системы диагностики включают диагностику в медицине, электронике, механике и программном обеспечении. Диагностирующие системы обычно соотносят наблюдаемые поведенческие отклонения с причинами, лежащими в основе.

Системы проектирования разрабатывают конфигурации объектов, которые удовлетворяют определенным требованиям задачи проектирования. Такие задачи включают конструирование зданий, планировка расположения оборудования и др. Эти системы конструируют различные взаимосвязи описаний объектов друг с другом и проверяют, удовлетворяют ли эти конфигурации установленным ограничениям и требованиям.

Системы планирования специализируются на задачах планирования, например, такой как автоматическое программирование. Они также работают с кратко и долгосрочным планированием в управлении проектами, маршрутизация, коммуникация,  разработка продукт а, военные приложения, производственное и финансовое планирование.

Системы мониторинга сравнивают наблюдения поведения системы со стандартами, которые представляются определяющими для достижения цели.  Эти решающие выявления соответствуют потенциальным недостаткам на предприятии. Существует много компьютерных систем мониторинга: от контроля движения воздушных потоков до задач управления сбором налогов.

Системы управления и контроля адаптивно управляют всеобщим поведением системы. Для осуществления этого система управления должна периодически интерпретировать текущую ситуацию, предсказывать будущее, диагностировать причины ожидаемых проблем, формулировать план устранения этих проблем и осуществлять мониторинг его выполнения для обеспечения успеха.

 Наиболее известные/распространённые ЭС:

  • CLIPS — популярная ЭС (public domain)
  • OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов
  • MYCIN — наиболее известная диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях.
  • HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в Тихом океане по данным акустических систем слежения.

Первую ЭС под названием Dendral разработали в Стэнфорде в конце 1960-х гг. Она определяла строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах. Ценность Dendral заключалась в следующем: органические молекулы, как правило, очень велики и поэтому число возможных структур этих молекул также велико; благодаря эвристическим знаниям экспертов-химиков, заложенных в ЭС, правильное решение из миллиона возможных находилось всего за несколько попыток. Принципы и идеи, заложенные в Dendral оказались настолько эффективными, что они до сих пор применяются в химических и фармацевтических лабораториях по всему миру. ЭС Dendral одной из первых использовала эвристические знания специалистов для достижения уровня эксперта в решении задач, однако методика современных экспертных систем связана с другой разработкой – Myсin. В ней использовались знания экспертов медицины для диагностики и лечения специального менингита и бактериальных инфекций крови. ЭС Mycin, также разработанная  в Стэнфорде в середине 1970-х гг., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области. Многие методики разработки экспертных систем, использующиеся сегодня, были впервые разработаны в рамках проекта Mycin. MYCIN была ранней экспертной системой разработанной за 5 или 6 лет в начале 1970х годов в Стендфордском университете. Она была написана на Лиспе как докторская диссертация Edward Shortliffe под руководством Bruce Buchanan, Stanley N. Cohen и других. В этой же лаборатории была ранее создана экспертная система Dendral, но на этот раз внимание было акцентировано на использовании решающих правил с элементами неопределенности. MYCIN был спроектирован для диагностирования бактерий, вызывающих тяжелые инфекции, такие как бактериемия и менингит, а также для рекомендации необходимого количества антибиотиков в зависимости от массы тела пациента. Название системы происходит от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Также Mycin использовалась для диагностики заболеваний свертываемости крови.

Преимущества ЭС:

1. Постоянство

Человеческая компетенция ослабевает со временем. Перерыв в деятельности человека-эксперта может серьёзно отразиться на его профессиональных качествах.

2. Лёгкость передачи

Передача знаний от одного человека другому – долгий и дорогой процесс. Передача искусственной информации – это простой процесс копирования программы или файла данных.

3. Устойчивость и воспроизводимость результатов

Экспертные системы устойчивы к «помехам». Человек же легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей. Эксперт-человек может принимать в тождественных ситуациях разные решения из-за эмоциональных факторов. Результаты экспертной системы – стабильны.

4. Стоимость

Эксперты, особенно высококвалифицированные обходятся очень дорого. Экспертные системы, наоборот, сравнительно недороги. Их разработка дорога, но они дёшевы в эксплуатации.

Кроме того, эксперт–человек может принимать различные решения в тождественных ситуациях из-за эмоциональных факторов (влияние дефицита времени, влияние стресса).

Табл.6.1.2.

Сравнение человеческой и искусственной компетентности

Человеческая компетентность

Искусственная компетентность

Непрочная

Трудно представляемая

Трудно документируемая

Непредсказуемая

Дорогая

Постоянная

Легко передаваемая

Легко документируемая

Устойчивая

Приемлемая по затратам

       Недостатки ЭС:

На сегодняшний день создано уже большое количество экспертных систем. С помощью них решается широкий круг задач, но исключительно в узкоспециализированных предметных областях. Как правило, эти области хорошо изучены и располагают более менее четкими стратегиями принятия решений. Сейчас развитие экспертных систем несколько приостановилось, и этому есть ряд причин:

  • Передача экспертным системам «глубоких» знаний о предметной области является большой проблемой. Как правило, это является следствием сложности формализации эвристических знаний экспертов.
  • Экспертные системы неспособны предоставить осмысленные объяснения своих рассуждений, как это делает человек. Как правило, экспертные системы всего лишь описывают последовательность шагов, предпринятых в процессе поиска решения.
  • Отладка и тестирование любой компьютерной программы является достаточно трудоемким делом, но проверять экспертные системы особенно тяжело. Это является серьезной проблемой, поскольку экспертные системы применяются в таких критичных областях, как управление воздушным и железнодорожным движением, системами оружия и в ядерной промышленности.
  • Экспертные системы обладают еще одним большим недостатком: они неспособны к самообучению. Для того, чтобы поддерживать экспертные системы в актуальном состоянии необходимо постоянное вмешательство в базу знаний инженеров по знаниям. Экспертные системы, лишенные поддержки со стороны разработчиков, быстро теряют свою востребованность.
  • Эксперты могут непосредственно воспринимать комплекс входной сенсорной информации (визуальной, звуковой, осязательной, обонятельной и тактильной). ЭС – только символы. Хотя в отдельных направлениях разработки инженерных и производственных интеллектуальных систем получены реальные результаты определенной обработки сенсорной информации.
  • Эксперты – люди могут охватить картину в целом, все аспекты проблемы и понять, как они соотносятся с основной задачей. ЭС стремится сосредоточить на самой задаче, хотя смежные задачи могут повлиять на решение основной.
  • Люди, эксперты и не эксперты, имеют то, что мы называем здравым смыслом, или общедоступными знаниями. Это широкий спектр общих знаний о мире, о том, какие законы в нем действуют, т.е. знания, которыми каждый из нас обладает, приобретает из опыта и которыми постоянно пользуется. Из-за огромного объема знаний, образующих здравый смысл, не существует легкого способа встроить их в интеллектуальную программу. Знания здравого смысла включают знания о том, что вы знаете и чего не знаете.

Поэтому ЭС наиболее часто используются как советчики, в качестве консультантов или помощников ЛПР.

 §2. Вопросно-ответные системы

 

Классификация Вопросно-ответных систем:

    • Интеллектуальные поисковики (например, система Старт)
    • Виртуальные цифровые помощники
    • Виртуальные собеседники (ВС)

Виртуальные собеседники устанавливаются на сайт и общаются с его пользователями посредством текстового чата. У каждого инфа есть свой визуальный образ, который способен передавать эмоции инфа и делает общение с собеседником более личным и доверительным.


Структура виртуальных собеседников:


Первый компонент ВС – это пользовательский интерфейс, при помощи которого пользователь разговаривает с ВС. Пользовательский интерфейс представляет собой окошко со строкой ввода текста, репликами инфа и его визуальным образом. По сути, это Flash-приложение, которое легко и быстро устанавливается на любой сайт.

Второй компонент – это комплексная платформа, которая определяет поведение и словарный запас ВС. Помимо прочего, в комплексную платформу входит база знаний инфа - набор гибких сценариев с заданными вариантами вопросов и ответов на них. Дополнительно к базе знаний может быть подключена клиентская база данных с пользовательской информацией, откуда инф будет брать конкретные данные о товарах и услугах. В частности, это широко применяется при разработке инфов-продавцов.

 

Решаемые задачи:


ВС легко поддаются обучению и помогают решить множество задач, стоящих перед заказчиком. Они могут быть:

  • консультантами, отвечающими на вопросы пользователей о представленных товарах и услугах;
  • продавцами, помогающими подобрать нужный товар, услугу, тариф и т.п.;
  • сотрудниками технической поддержки, помогающими пользователю решить возникшие технические проблемы;
  • промоутерами, продвигающими новые товары и услуги;
  • интересными собеседниками, вызывающими интерес, повышающими настроение и лояльность посетителей.

 

Сферы применения:

  • Банки и страховые компании, которым важно иметь на сайте грамотного консультанта, способного оперативно рассказать все подробности о предоставляемых услугах;
  • Интернет–магазины, которым важно помогать клиентам в выборе товаров, а также продвигать акции и распродажи;
  • Интернет–порталы, которым необходимо привлекать внимание пользователей к их внутренним проектам;
  • Организаторы мероприятий, которым важно информировать посетителей сайта о всех новостях и подробностях;
  • Компании, оказывающие технические услуги, которым важно обеспечить круглосуточную техническую поддержку пользователей.

Преимущества виртуальных собеседников:

  • Работоспособность: инф работает 24 часа в сутки 7 дней в неделю и может одновременно общаться с неограниченным количеством пользователей. Инф позволяет снизить нагрузку и расходы на call-центр, консультантов и специалистов технической поддержки.
  • Доступность: инф снимает психологический барьер, стоящий перед пользователем при обращении за помощью; достаточно ввести фразу – и инф моментально даст грамотный совет. При этом пользователи относятся к инфу с доверием, поскольку он умеет поддерживать живой, непринужденный диалог и даже выражать эмоции в ответ на реплики пользователя.
  • Простота работы: инф не требует от пользователя использования никаких дополнительных программ. В то же время инф не создает проблем и у заказчика: для установки инфа на сайт достаточно разместить на страницах специальный короткий код.
  • Компетентность: инф легко поддается обучению, что позволяет заложить в него все важные вопросы, которые интересуют пользователей. Инф способен помогать пользователю в навигации по сайту, автоматически открывая необходимые страницы. При необходимости инф может сам инициировать диалоги на нужные темы.
  • Внимательность: Инф записывает все разговоры с пользователями, и заказчик имеет к ним полный доступ. Записи разговоров полезны как с точки зрения дальнейшего обучения инфа, так и с точки зрения сбора ценной информации о пользователях и их интересах.

 

Использование ВС позволяет:

  • Увеличить конверсию посетителей в клиентов: инф снимает мотивационный барьер между пользователем и сайтом, поскольку сразу вызывает доверие у пользователя и дает ему именно ту информацию, которая его интересует.
  • Повысить лояльность посетителей: яркий, позитивный инф поддерживает живое общение с пользователем и вызывает у него самые положительные эмоции. Что важно, в сознании пользователя эти эмоции будут напрямую связаны с образом компании - заказчика инфа.
  • Улучшить эффект от рекламной кампании и маркетинговых акций: инф привлекает к себе внимание пользователей и предоставляет им самую полную информацию о рекламируемом предмете.
  • Снизить нагрузку на штатных консультантов, продавцов и сотрудников техподдержки: отвечая на часто возникающие и легко решаемые вопросы, инф экономит время и силы штатных специалистов, позволяя им сконцентрироваться на действительно важных проблемах.
  • Повысить уровень обслуживания клиентов: инф позволяет выяснить, что интересует конкретного клиента, и предоставить ему то, что нужно!

    Глава VII. Перспективы развития ИИС в управлении знаниями

 Рассматривая тенденции развития Интеллектуальных информационных систем в управлении знаниями, следует отметить следующие основные направления, связанные с разработкой моделей и методов реализации отдельных аспектов получения и преобразования знаний:

1. Технологии извлечения и представления знаний. В первом случае основной задачей является разработка методов: формального описания "признаков знаний" (поисковых образов); формализации ПрО; распознавания и сравнения образов; извлечения знаний из экспертов, статистики, текстов, "опыта" и т.п. Во втором - решаются задачи, связанные с формализацией знаний для их представления в памяти интеллектуальных систем (ИС). Решение этих задач позволяет разработчикам комплексных технологий получить ответы на три принципиально важных вопроса: какие знания необходимо представлять в ИС, кто (что) является источником этих знаний, какие методы и модели обеспечивают адекватное представление этих знаний в ИС.

2. Технологии манипулирования знаниями, решение интеллектуальных задач  предполагает не только представление знаний в ИС, но и их обработку, т.е. необходимо научить ИС оперировать ими. Поэтому здесь изучаются вопросы пополнения знаний на основе их неполных описаний, классификации знаний в ИС, разрабатываются процедуры и методы обобщения знаний, достоверного вывода и др.

3. Технология общения. Переход к ИС знаменует новую технологию общения конечных пользователей с ЭВМ и требует решения таких проблем, как понимание связных текстов на ограниченном и неограниченном естественном языке, понимание речи и ее синтез, разработка коммуникативных моделей "пользователь-ЭВМ", формирование объяснений и т.п. Главная цель данных исследований - обеспечение комфортных условий для общения человека и ИС.

4. Технологии восприятия. Разработка этих технологий предполагает создание методов: анализа трехмерных сцен, представления информации о зрительных образах в базе знаний ИС, трансформации зрительных сцен в текстовые описания и обратно, а также разработку процедур когнитивной графики и др.

5. Технологии обучения. Отличительной особенностью ИС должна стать их способность решать задачи, в явном виде не представленные в БЗ, что требует наделения ИС способностью к обучению. Для этих целей необходимо: создать методы формирования условий задачи по описанию проблемной ситуации или по наблюдению за этой ситуацией, обеспечить переход от известного решения частных задач к решению общей задачи, наделить ИС способностью декомпозировать исходную задачу на более мелкие, решение которых известно, разработать нормативные и декларативные модели самого процесса обучения, создать теорию подражательного поведения и др.

6. Технологии поведения. Взаимодействие ИС со средой требует разработки специальных поведенческих процедур, которые бы позволили им адекватно реагировать на те или иные изменения в среде. Такое взаимодействие предполагает создание моделей целесообразного, нормативного и ситуативного поведения, а также разработку методов многоуровневого планирования и коррекции планов в динамических ситуациях.

 Заключение

 

Области применения существующих на сегодняшний день систем ИИ охватывает множество сфер: медицинскую диагностику, интерпретацию геологических данных,  научные исследования в химии и биологии, военное дело, производство, финансы и другие области. Однако, несмотря на значительные успехи в области ИИ, пока еще существует определенный разрыв между техническими разработками, программными средствами ИИ и возможностями их более широко практического применения в частности, в экономике.

Наиболее показательным сектором, аккумулирующим различные проблемные направления экономической области, является управление промышленным предприятием. На его примере особенно хорошо видны преимущества использования систем ИИ для решения как различных предметных задач, так и для управления интегрированной системой предприятия в целом.

Существует множество доводов в пользу того, что системы искусственного интеллекта могут и должны стать важнейшей составной частью в технологии современных производств. Основными из них являются:

- преодоление  сложности (сложности управления  возникают тогда, когда

приходится делать выбор из множества возможных решений);

- управление предприятием требует организации больших объемов информа­ции;

- как уменьшить информацию до того уровня, который необходим для принятия решения (потеря информации, поступающей от объектов, работающих в реальном
режиме времени, может существенно сказаться на результате);

- нехватка времени на принятие решения (проявляется по мере усложнения
производства);

- проблема координации (решения необходимо координировать с другими
звеньями процесса или объекта);

-        необходимость сохранения и распространения знаний очень опытных экспертов, полученных ими в процессе многолетней работы и большого практического
опыта.

Проблема извлечения знаний и их сохранения и распределе­ния — сегодня одна из главных проблем ор­ганизаций.

Таким образом, интеллектуализация информационных систем управления и трансформация их в интеллектуальные информационные системы управления знаниями, поддержки принятия решений является наиболее значимым и важным для экономики и бизнеса направлением.

 Список источников информации

 

1.                  Chi Leung Patrick Hui, ISBN 978-953-307-188-6, 586 pages, April 2011

2.                  Edited by Karl Perusich, Cognitive Maps, ISBN 978-953-307-044-5, 140 pages, January 2010

3.                  John Prager, Eric Brown, Anni Coden, and Dragomir Radev. Question-answering by predictive annotation. In Proceedings, 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Athens, Greece, July 2000

4.                  Knox Haggie, John Kingston, Choosing Your Knowledge Management Strategy, School of Informatics, University of Edinburgh, Journal of Knowledge Management Practice, June 2003

5.                  Negnevitsky M. Artificial Intelligence. A guide to intelligent systems. Addison-Wesley, 2005.

6.                  Peter Jackson, Introduction to Expert Systems. — 3rd edition, Hardbound — Addison Wesley Publishing Company, 1998-12-31 — 560p. — ISBN 0201876868

7.                  Абдикеев Н.М. Проектирование интеллектуальных систем в экономике: Учебник. – М.: Экзамен, 2004. – 528 с.

8.                  Абдикеев Н.М. Интеллектуальные информационные системы: Учебное пособие.- М.: КОС-ИНФ, Рос. экон. акад., 2003. – 188 с.

9.                  Абдикеев Н.М., Киселев А.Д. Управление знаниями корпорации и реинжиниринг бизнеса (Под ред. Абдикеева Н.М.). Инфра-М, Москва, 2010

10.              А.В. Гаврилов. Гибридные интеллектуальные системы: Монография – Новосибирск: Изд-во НГТУ, 2002. – 142 с.

11.              В.В. Бухтояров "Эволюционный метод формирования общего решения в коллективах нейронных сетей", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2010 / 03

12.              Г.В. Рыбина, А.О. Дейнеко "Распределенное приобретение знаний для автоматизированного построения интегрированных экспертных систем", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2010 / 04

13.              Г.В. Рыбина "Обучающие интегрированные экспертные системы: некоторые итоги и перспективы", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2008 / 01

14.              Г.С. Осипов "Динамические интеллектуальные системы", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер 2008 / 01

15.              Золотов С.И. Интеллектуальные информационные системы: учебное пособие / С.И. Золотов – Воронеж: Научная книга, 2007. –140с.

16.              Интеллектуальные информационные системы: учебник для студентов высших учебных заведений, обучающихся по специальности "Прикладная информатика в экономике" / А. В. Андрейчиков, О. Н. Андрейчикова. - М. : Финансы и статистика, 2004. - 423 с.

17.              Интеллектуальные методы для создания информационных систем: учебное пособие / Е.Ю. Головина.– М.: Издательский дом  МЭИ, 2011. – 102   с. - ISBN 978-5-383-00212-4

18.              П.Р. Варшавский, А.П. Еремеев "Моделирование рассуждений на основе прецедентов в интеллектуальных системах поддержки принятия решений", Журнал «Искусственный интеллект и принятие решений» под гл. редакцией академика С.В. Емельянова, номер   2009 / 02

19.              Романов В.П. Интеллектуальные информационные системы в экономике Учебное пособие / Под ред. д. э. н., проф. Н. П. Тихомирова. — М.: Издательство «Экзамен», 2003. — 496 с.

20.              Рыбина Г.В. "Теория и практика построения интегрированных экспертных систем", Рецензенты: зав.каф. прикладной математики МЭИ, д.т.н., проф. Еремеев А.П., зав.каф. МГУПИ, д.т.н., проф. Петров О.М.,  М.: ООО Издательство "Научтехлитиздат", 2008. -485 с. - ISBN 978-5-93728-081-7

21.              Таунсенд К., Фохт Д. Проектирование и программная реализация экспертных систем на персональных ЭВМ: Пер. с англ. В. А. Кондратенко, С. В. Трубицына. — М.: Финансы и статистика, 1990. — 320 с.

 

Comments