RNA Interferance
Furnace Air Filters
Here's a review of the popular furnace air filters...

RNAi Details


The discovery of reagents to inhibit RNA synthesis and translation has revolutionized the study of biological processes. These tools include small inhibitory RNA (siRNA), small hairpin RNA (shRNA) and ribozymes. As RNA interference technology has grown, so has the list of validated RNA target sequences and reagents for study. This web site includes a database of validated siRNA target sequences and links to kits and reagents that may be used for RNA interference experiments.

The Mechanism of RNA Interference (RNAi)

Long double-stranded RNAs (dsRNAs; typically >200 nt) can be used to silence the expression of target genes in a variety of organisms and cell types (e.g., worms, fruit flies, and plants). Upon introduction, the long dsRNAs enter a cellular pathway that is commonly referred to as the RNA interference (RNAi) pathway. First, the dsRNAs get processed into 20-25 nucleotide (nt) small interfering RNAs (siRNAs) by an RNase III-like enzyme called Dicer (initiation step). Then, the siRNAs assemble into endoribonuclease-containing complexes known as RNA-induced silencing complexes (RISCs), unwinding in the process. The siRNA strands subsequently guide the RISCs to complementary RNA molecules, where they cleave and destroy the cognate RNA (effecter step). Cleavage of cognate RNA takes place near the middle of the region bound by the siRNA strand.

In mammalian cells, introduction of long dsRNA (>30 nt) initiates a potent antiviral response, exemplified by nonspecific inhibition of protein synthesis and RNA degradation. The mammalian antiviral response can be bypassed, however, by the introduction or expression of siRNAs.