Chieh Chang

Chieh Chang

The research in Dr. Chang's laboratory addresses these questions: How do neurons regulate transition of sequential events in neuronal connectivity from axon pathfinding to synapse formation? How do neurons regenerate and repair themselves after injury? How does age influence the intrinsic nerve regeneration ability? How are neuronal degeneration and regeneration related? What mechanisms govern dendritic arborization of a nociceptive neuron to ensure uniform sensory coverage of skin that envelops the entire animal body? Dr. Chang asks these questions mainly in the context of nematode C. elegans with an overarching goal of establishing basic principles underlying development and regeneration of neural circuits that can be applicable to other model organisms. Dr. Chang has studied signaling mechanisms that control gene expression, organogenesis, nerve pathfinding, and nerve regeneration for nearly nineteen years. While intense scrutiny has been focused on dissecting molecular functions in neurons with sufficient spatial resolution, so far there is not enough temporal information to fully understand involved mechanisms. Dr. Chang's lab hopes to understand timing mechanisms for orderly neuronal connectivity in development and regeneration decline in aging. 

    2014-            Associate Professor, University of Illinois at Chicago    
    2008-            Head, Laboratory of Assembly and Regeneration of Neural Circuits, Division of Developmental 
                          Biology and Department of Pediatrics, Cincinnati Children's Hospital Research Foundation
    2006-2008    Assistant Professor of Biology, Associate Member of Neurology and Neurosurgery, McGill University
    2001-2006    Postdoctoral research with Dr. Marc Tessier-Lavigne at the HHMIStanford University and with 
                          Dr. Cornelia I. Bargmann at the HHMI, University of California, San Francisco & Rockefeller University
    1995-2001    Doctoral research with Dr. Paul W. Sternberg at the HHMICalifornia Institute of Technology
    2013                 Whitehall Foundation Research Award
    2010                 March of Dimes Research Program Award, March of Dimes Foundation
    2009                 Whitehall Foundation Research Award
    2006                 Canada Foundation for Innovation, Leaders Opportunity Award
    2003-2005  American Cancer Society Postdoctoral Fellow
    1998-1999  Helen G. and Arthur McCallum Fellowship, Caltech
    1995-1998  Howard Hughes Medical Fellowship, Caltech

Google Scholar


    Alqadah A, Hsieh Y-W, Vidal B, Chang C, Hobert O, Chuang C-F. Postmitotic diversification of olfactory neuron types is mediated by differential activities of the HMG-box transcription factor SOX-2. EMBO Journal, 34, 2574-2589, 2015. 


    Chiu H, Alqadah A, Chang C. The role of microRNAs in regulating neuronal connectivity. Frontiers in Cellular Neuroscience 7, 1-6, 2014.


   Chiu H, Chang C. Rejuvenating nerve cells in adults. Aging 5, 1-2, 2013.

    Zou Y, Chiu HZinovyeva A, Ambros V, Chuang C-F, Chang CDevelopmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340, 372-376, 2013.  Equal contribution. 
Recommended by Faculty of 1000; Featured in "Perspective: Heterochronic genes turn back the clock in old neurons" Nix P, Bastiani M, Science, 340, 282-283, 2013; Highlighted in "Editors' Choice: Turn Off Youth" Hines P. J.Science Signaling, 2013. 


    Zou Y, Chiu H, Domenger D, Chuang C-F, Chang CThe lin-4 microRNA targets the LIN-14 transcription factor to inhibit netrin-mediated axon attraction. Science Signaling 5, research article ra43, 2012.  

    Hsieh Y-W, Chang C*, Chuang C-F*. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in  C. elegans.  PLoS Genetics 8(8), research article e1002864, Aug 2. 2012.  *Co-corresponding authors    

    Schumacher JA, Hsieh Y-W, Chen S, Pirri JK, Alkema MJ, Li W-H, Chang C*, Chuang C-F*. Intercellular calcium signaling in a gap junction-coupled cell network establishes asymmetric neuronal fates in C. elegans. Development 139, 4191-4201. 2012. *Co-corresponding authors


    Chiu H, Alqadah  A, Chuang C-F, Chang C. C. elegans as a genetic model to identify novel cellular and molecular mechanisms underlying nervous system regeneration. Cell Adhesion & Migration 5, 387-394, 2011. 

    Chang C, Hsieh Y-W, Lesch BJ, Bargmann CI, Chuang C-F. Microtubule-based localization of a synaptic calcium signaling complex is required for left-right neuronal asymmetry in C. elegans. Development 138, 3509-3518, 2011. 


    Gabel CV, Antoine F, Chuang CF, Samuel ADT, Chang C.  Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans.  Development 135, 1129-36, 2008. 

    Samuel ADT, Chung SH, Clark DA, Gabel CV, Chang C, Murthy V, Mazur E. Femtosecond laser dissection in C. elegans neural circuits. Proceedings of the International Society for Optical Engineering 6108, 6108011-16, 2006.

Postdoctoral Research 
    Chang C, Adler C, Krause M, Clark S, Hao J, Gertler F, Tessier-Lavigne M*, Bargmann CI*. MIG-10/Lamellipodin and the lipid modulator AGE-1/PI3K promote axon guidance and outgrowth in response to Slit and Netrin.  Current Biology 16, 854-62, 2006.  *Co-corresponding authors  
    Chang C, Yu TW, Bargmann CI*, Tessier-Lavigne M*. Inhibition of Netrin-mediated axon attraction by a receptor protein tyrosine phosphatase. Science 305, 103-6, 2004.  *Co-corresponding authors  
Recommended by Faculty of 1000

Ph.D. Research

    Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis, and metastasis. Trends in Cell Biology 11, S37-43, 2001.

    Yoon CH*, Chang C*, Hopper NA*, Lesa GM, Sternberg PW. Requirements of multidomains of SLI-1, a C. elegans homolog of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. Molecular Biology of the Cell 11, 4019-31, 2000.  *Equal contribution

    Chang C, Hopper NA, Sternberg PW. Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. EMBO Journal 19, 3283-94, 2000.

    Chang C, Sternberg PW. C. elegans vulval development as a model system to study the cancer biology of EGFR signaling. Cancer and Metastasis Reviews 18, 203-13, 1999.

    Chang C, Newman AP, Sternberg PW. Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia.  Current Biology 9, 237-46, 1999.

    Hsieh J, Liu J, Kostas SA, Chang C, Sternberg PW, Fire A. The RING finger/B-box factor TAM-1 and a retinoblastoma-like proteins LIN-35 modulate context-dependent gene silencing in C. elegans. Genes & Development 13, 2958-70, 1999.

    Bogarad LD, Arnone MI, Chang C, Davidson EH. Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors . Proc National Academy of Sciences USA 95(25), 14827-32, 1998.