J. Weng, Y. Zhang, W. Hwang, "Candid Covariance-free Incremental Principal Component Analysis", IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1034-1040, 2003.
C. Tang, “Exponentially convergent stochastic k-PCA without variance reduction”, Neural Information Processing Systems, NeurIPS 2019, 2019.
Y. Rao, J. Principe, "A fast, on-line algorithm for PCA and its convergence characteristics", International Conference on Neural Networks for Signal Processing, pages 299-307, 2000.
A. Balsubramani, S. Dasgupta, Y. Freund, "The fast convergence of incremental PCA", Advances Neural Information Processing Systems, pages 3174-3182, 2013.
S. Zhou, X. Liu, L.Xu, “Stochastic Gauss–Newton Algorithms for Online PCA”, Journal of Scientific Computing, Volume 96, July 2023.
R. Mitz, Y. Shkolnisky, “ROIPCA: an online memory-restricted PCA algorithm based on rank-one updates”, Information and Inference, Volume 12, Issue 4, December 2023.
H. Huang, T. Shah, S. Evans, S. Yoo, “Energy Efficient Streaming Time Series Classification with Attentive Power Iteration”, AAAI Conference on Artificial Intelligence, AAAI 2024, 2024.