S. Samadi, U. Tantipongpipat, J. Morgenstern, M. Singh, S. Vempala, “The price of fair PCA: One extra dimension", Advances in Neural Information Processing Systems, NeurIPS 2018, pages 10976-10987, 2018.
M. Olfat, A. Aswani, “Convex formulations for fair principal component analysis", AAAI Conference on Artificial Intelligence, Volume 33, pages 663-670, 2019.
U. Tantipongpipat, S. Samadi, M. Singh, J. Morgenstern, S. Vempala, “Multi-criteria dimensionality reduction with applications to fairness", Advances in Neural Information Processing Systems, NeurIPS 2019, Volume 32, pages 15161-15171, Vancouver, Canada, 2019.
J. Morgenstern, S. Samadi, M. Singh, U. Tantipongpipat, S. Vempala, “Fair dimensionality reduction and iterative rounding for SDPs", Preprint, 2019.
G. Zalcberg, A. Wiesel, “Fair principal component analysis and filter design", IEEE Transactions on Signal Processing, Volume 69, pages 4835-4842, 2021.
J. Lee, G. Kim, M. Olfat, M. Hasegawa-Johnson, C. Yoo, “Fast and efficient MMD-based fair PCA via optimization over Stiefel manifold", AAAI Conference on Artificial Intelligence, AAAI 2022, pages 7363–7371, 2022.
M. Kamani, F. Haddadpour, R. Forsati, M. Mahdavi, “Efficient fair principal component analysis", Machine Learning, Volume 111, pages 3671-3702, 2022.
G. Pelegrina, R. Brotto, L. Duarte, R. Attux, J. Romano, “Analysis of trade-offs in fair principal component analysis based on multi-objective optimization", IEEE International Joint Conference on Neural Networks, IJCNN 2022, 2022.
G. Pelegrina, L. Duarte, "A Novel Approach for Fair Principal Component Analysis based on Eigendecomposition", IEEE Transactions on Artificial Intelligence, 2023.
P. Babu, P Stoica, "Fair principal component analysis (PCA): minorization-maximization algorithms for Fair PCA, Fair Robust PCA and Fair Sparse PCA”, Preprint, 2023.
J. Lee, H. Cho, S. Yun, C. Yun, "Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint", Neural Information Processing Systems, NeurIPS 2023, 2023.
M. Xu, B. Jiang, W. Pu, Y. Liu, A. So, "An Efficient Alternating Riemannian/Projected Gradient Descent Ascent Algorithm for Fair Principal Component Analysis", IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2024, pages 7195-7199, Seoul, South Korea, 2024.