Overview

    Research Overview
In general, our research is focused on the development of novel ways to perform computation. Our research is highly interdisciplinary in nature, spanning across material science, physics, electrical engineering and computer science, and involves both theoretical and experimental work.  This includes development of functional materials and investigating physical principles to implement novel electronic devices, exploration of novel high performance circuit architectures for general purpose and application specific tasks, and development of relevant algorithms and software tools. Our current research focus is on resistive switching ("memristive") effect in metal oxide thin-film devices and its applications in computing, specifically in the context of CMOL circuits.

    Selected Recent Papers

       An experimental demonstration of pattern classifier with crossbar-integrated memristors:
  • M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors", Nature 521, pp. 61-64, May 2015.
       A proposal for novel computing approach based on propagation delay of signals in electrical circuits: 
  • A. Madhavan, T. Sherwood, and D.B. Strukov, "Race logic: Abusing hardware race conditions to perform useful computation", IEEE Micro: Micro's Top Picks from Computer Architecture Conferences, January-February 2015 (in print).
       An experimental demonstration of memristor-based neural network implementing pattern classification:
      A comprehensive review of resistive switching devices and their applications: 
      An experimental demonstration of high precision conductance tuning in TiO2-x memristors:
      A proposal for microscopic origin of SET process for unipolar devices: 

    Recent Talks
    Lab Facilities
Our lab is equipped with various electrical characterization tools including cryogenic probe station, Agilent B1500 parameter analyzers, and Agilent 81180A arbitrary waveform generator. The fabrication facilities (cleanroom with state-of-the-art e-beam, photo and nanoimprinting lithographies, various deposition tools etc.) and material characterization tools (XPS, SIMS, SEM, TEM, AFM) are provided by UCSB nanofabrication center and Materials department. The experimental and theoretical work is aided with COMSOL, Matlab, Labview, Cadence software and NVidea Tesla S1070 computer.

    Funding
Our research is funded by grants from NSF, AFOSR, DARPA, ARO, NIST, DENSO Corporation, and gifts from Hewlett Packard Laboratories and Hellman Family Foundation.

    Open Positions
None at this time.

Last updated on March 27th, 2015