Figure 52. Craniofacial morphology and body weight are important factors for occurrence of SAS. Dental treatment is related to both factors. A custom to chew foods enough from the infancy and facilitate the growth development of a craniofacial structure, and dental management including oral appliance therapy and maxillofacial surgical treatment to guide to both functionally and morphologically normal craniofacial morphology may prevent the patients from occurrence of SAS after reaching adulthood.
Conclusion
A combination of abnormal anatomy and physiology in the stomatognathic system is necessary to produce sleep-disordered breathing. Oral appliance therapy has a definite role in the treatment of sleep apnea and snoring. Enough chewing from childhood or orthodontic and other dental treatment can promote normal growth of craniofacial morphology, restrain overeating and obesity, and may prevent SAS (Figure 52). Dental approaches are very important in the treatment and prevention of SAS.
References
[1] Guilleminault, C; Dement, WC. Sleep apnea syndromes. New York: Alan R Liss. 1978.
[2] Wilms, D; Popovich, J; Conway, W; Fujita, S; Roth, T. Anatomic abnormalities in obstructive sleep apnea. Ann Otol Rhinol Laryngol, 1982;91:595-596.
[3] Findley L, Unverzagt M, Suratt P: Automobile accidents involving patients with obstructive sleep apnea. Am Rev Respir Dis, 1988;138:337-340.
[4] Young, T; Palta, M; Dempsey, J; Skatrud, J; Weber, S; Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med, 1993; 328:1230-1235.
[5] Brooks, D; Horner, RL; Kozar, LF; Render-Teixeira, CL; Phillipson, EA. Obstructive sleep apnea as a cause of systemic hypertension: evidence from a canine model. J Clin Invest, 1997;99:106-109.
[6] Mooe, T; Rabben, T; Wiklund, U; Franklin, KA; Eriksson, P. Sleep-disordered breathing in men with coronary artery disease. Chest, 1996;109:659-663.
[7] Franklin, KA; Nilsson, JB; Sahlin, C; Näslund, U. Sleep apnoea and nocturnal angina. Lancet, 1995;345:1085-1086
[8] Lugaresi, E; Cirignotta, F; Montagna, P. Pathogenic aspects of snoring and obstructive apnea syndrome. Schweiz Med Wschr, 1988;118:1333-1337.
[9] Yoshida, K. Treatment and prognosis of sleep apnea syndrome. 3. Oral appliance. Mebio, 2007;24:124-138.
[10] Kamijo, Y. Oral anatomy. Tokyo: Anatom, 1965.
[11] Harmon EM, Wynne JW, Black AJ: The effect of weight loss on sleep disordered breathing and oxygen desaturation in morbidly obese men. Chest, 1982;82:291-294.
[12] Cartwright, RD; Lloyd, S; Lilie, J; Krawitz, H. Sleep position training as treatment for sleep apnea syndrome: a preliminary study. Sleep, 1985;8:87-94.
[13] Meier-Ewert, K; Schäfer, H; Kloss, W. Treatment of sleep apnea by a mandibular protracting device. [Abstract]. Proceedings of the Seventh European Sleep Congress, Munich 1984;217.
[14] Kloss, W; Meier-Ewert, K; Schäfer, H. Zur Therapie des obstruktiven Schlaf-Apnoe-Syndroms. Fortschr Neurol Psychiatr, 1986;54:267-271.
[15] Ichioka, M; Tojo, N; Yoshizawa, M; Chida, M; Miyazato, I; Taniai, S; Marumo, F; Nakagawa, K; Hasegawa, M. A dental device for the treatment of obstructive sleep apnea: a preliminary study. Otolaryngol Head Neck Surg, 1991;104:555-558.
[16] Schmidt-Nowara, WW; Mead, TE; Hays, MB. Treatment of snoring and obstructive sleep apnea with a dental orthosis. Chest, 1991;99:1378-1385.
[17] Nakazawa, Y; Sakamoto, T; Yasutake, R; Yamaga, K; Kotorii, T; Miyahara, Y; Ariyoshi, Y; Kameyama, T. Treatment of sleep apnea with prosthetic mandibular advancement (PMA). Sleep, 1992;15:499-504.
[18] Clark, GT; Arand, D; Chung, E; Tong, D. Effect of anterior mandibular positioning on obstructive sleep apnea. Am Rev Respir Dis, 1993;147:624-629.
[19] Yoshida, K. Prosthetic therapy for sleep apnea syndrome. J Prosthet Dent, 1994;72: 296-302.
[20] Marklund, M; Franklin, KA; Sahlin, C; Lundgren, R. The effect of a mandibular advancement device on apneas and sleep in patients with obstructive sleep apnea. Chest, 1998;113:707-713.
[21] Yoshida, K. Prothetische Therapie des Schlafapnoesyndroms: Wirksamkeit bei obstruktiven, gemischten und zentralen Apnoen. Acta Med Dent Helv, 1998;3:75-78.
[22] Yoshida, K. Effects of a mandibular advancement device for the treatment of sleep apnea syndrome and snoring on respiratory function and sleep quality. J Craniomandibl Pract, 2000;18:98-105.
[23] Sullivan, CE; Issa, FG; Berthon-Jones, M; Eves, L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet, 1981;1:862-865.
[24] Kribbs, NB; Pack, AI; Kline, LR; Smith, PL; Schwartz, AR; Schubert, NM; Redline, S; Henry, JN; Getsy, JE; Dinges, DF. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am Rev Respir Dis, 1993;147:887-895.
[25] Naegele, B; Pepin, JL; Levy, P; Bonnet, C; Pellat, J; Feuerstein, C. Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome (OSAS) after CPAP treatment. Sleep, 1998;21:392-397.
[26] Fujita, S; Conway, W; Zorick, F; Roth, T. Surgical correction of anatomic abnormalities in obstructive sleep apnea syndrome: Uvulopalatopharyngoplasty. Otolaryngol Head Neck Surg, 1981;89:923-934.
[27] Hochban, W; Brandenburg, U; Peter, JH. Surgical treatment of obstructive sleep apnea by maxillomandibular advancement. Sleep, 1994;17:624-629.
[28] Guilleminault, C; Simmons, FB; Motta, J; Cummiskey, J; Rosekind, M; Schroeder, JS; Dement, WC. Obstructive sleep apnea syndrome and tracheostomy: long-term follow-up experience. Arch Intern Med, 1981;141:985-988.
[29] Schmidt-Nowara, W; Lowe, A; Wiegand, L; Cartwright, R; Perez-Guerra, F; Menn, S. Oral appliances for the treatment of snoring and obstructive sleep apnea: a review. Sleep, 1995;18:501-510.
[30] Ferguson, KA; Lowe, AA. Oral appliances for sleep-disordered breathing. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Fourth edition. Philadelphia: Elsevier Saunders. 2005:1098-1108.
[31] Ferguson, KA; Cartwright, R; Rogers, R; Schmidt-Nowara, W. Oral appliances for snoring and obstructive sleep apnea: a review. Sleep, 2006;29:244-262.
[32] Hoffstein, V. Review of oral appliances for treatment of sleep-disordered breathing. Sleep Breath, 2007;11:1-22.
[33] American Sleep Disorders Association Standards of Practice Committee. Practice parameters for the treatment of snoring and obstructive sleep apnea with oral appliances. Sleep, 1995;18:511-513.
[34] Ferguson, KA; Ono, T; Lowe, AA; Keenan, SP; Fleetham, JA. A randomized crossover study of an oral appliance vs nasal-continuous positive airway pressure in the treatment of mild-moderate obstructive sleep apnea. Chest, 1996;109:1269-1275.
[35] Clark, GT; Blumenfeld, I; Yoffe, N; Peled, E; Lavie, P. A crossover study comparing the efficacy of continuous positive airway pressure with anterior mandibular positioning devices on patients with obstructive sleep apnea. Chest, 1996;109:1477-1483.
[36] Miljeteig, H; Mateika, S; Haight, JS; Cole, P; Hoffstein, V. Subjective and objective assessment of uvulopalatopharyngoplasty for treatment of snoring and obstructive sleep apnea. Am J Resp Crit Care Med, 1994;150:1286-1290.
[37] Riley, RW; Powell, NB; Guilleminault, C. Obstructive sleep apnea syndrome: a review of 306 consecutively treated surgical patients. Otolaryngeal Head Neck Surg, 1993;108:117-125.
[38] Mylonas, T; Yoshida, K; Siebert, GK. Apnoe-Schiene für Patienten mit Schlaf-Apnoe-Syndrom. Zahnärztl Welt, 1994;103:432-434.
[39] Yoshida, K. Effect of oral appliance. Shiomi T, Kikuchi M, eds. Clinical sleep medicine and dentistry. Tokyo: Hyoron Publishers; 2004:150-157.
[40] Yoshida, K. Elastic retracted oral appliance to treat sleep apnea in mentally impaired patients and patients with neuromuscular disabilities. J Prosthet Dent, 1999;81:196-201.
[41] Lowe, AA. Dental appliances for the treatment of snoring and/or obstructive sleep apnea. In: Kryger MH, Roth T, Dement W, editors. Principles and practice of sleep medicine. Second edition. Philadelphia: WB Saunders Co, 1994:722-35.
[42] Cartwright, RD; Samelson, CF. The effects of a nonsurgical treatment for obstructive sleep apnea. The tongue-retaining device. JAMA, 1982;248:705-709.
[43] Rose,E; Staats, R; Virchow, C; Jonas, IE. A comparative study of two mandibular advancement appliances for the treatment of obstructive sleep apnoea. Eur J Orthod, 2002;24:191-198.
[44] Yoshida, K. Oral device therapy for the upper airway resistance syndrome patient. J Prosthet Dent, 2002;87:427-430.
[45] Guilleminault, C; Stoohs, R; Clerk, A; Cetel, M; Maistros, P. A cause of excessive daytime sleepiness: the upper airway resistance syndrome. Chest, 1993;104:781-787.
[46] Guilleminault, C; Stoohs, R; Kim, Y; Chervin, R; Black, J; Clerk, A. Upper airway sleep-disordered breathing in women. Ann Intern Med, 1995;122:493-501.
[47] Exar, E. N; Collop, N. A. The upper airway resistance syndrome. Chest 1999;115:1127-1139.
[48] Isono, S; Tanaka, A; Sho, Y; Konno, A; Mishino, T. Advancement of the mandible improves velopharyngeal airway patency. J Appl Physiol, 1995;79:2132-2138.
[49] Ishida, M; Inoue, Y; Suto, Y; Okamoto, K; Ryoke, K; Higami, S; Suzuki, T; Kawahara, R. Mechanism of action and therapeutic indication of prosthetic mandibular advancement in obstructive sleep apnea syndrome. Psychiatry Clin Neurosci, 1998;52:227-229.
[50] Eveloff, SE; Rosenberg, CL; Carlisle, CC; Millman, RP. Efficacy of a Herbst mandibular advancement device in obstructive sleep apnea. Am J Respir Crit Care Med, 1994;149:905-909.
[51] Mayer, G; Meier-Ewert, K. Cephalometric predictors for orthopaedic mandibular advancement in obstructive sleep apnoea. Eur J Orthod, 1995;17:35-43.
[52] Johal, A; Battagel, JM. An investigation into the changes in airway dimension and the efficacy of mandibular advancement appliances in subjects with obstructive sleep apnoea. Br J Orthod, 1999;26:205-210.
[53] Battagel, JM; Johal, A; L’Estrange, PR; Croft, CB; Kotecha, B. Changes in airway and hyoid position in response to mandibular protrusion in subjects with obstructive sleep apnoea (OSA). Eur J Orthod, 1999;21:363-376.
[54] Liu, Y; Park, YC, Lowe, AA; Fleetham, JA. Supine cephalometric analyses of an adjustable oral appliance used in the treatment of obstructive sleep apnea. Sleep Breath, 2000;4:59-66.
[55] Gao, XM; Zeng XL; Fu, MK; Huang, XZ. Magnetic resonance imaging of the upper airway in obstructive sleep apnea before and after oral appliance therapy. Chin J Dent Res, 1999;2:27-35.
[56] Gale, DJ; Sawyer, RH; Woodcock, A; Stone, P; Thompson, R; O’Brien, K. Do oral appliances enlarge the airway in patients with obstructive sleep apnoea? A prospective computerized tomographic study. Eur J Orthod, 200;22:159-168.
[57] Cobo, J, Canut, JA; Carlos, F; Vijande, M; Llamas, JM. Changes in the upper airway of patients who wear a modified functional appliance to treat obstructive sleep apnea. Int J Adult Orthod Orthognath Surg, 1995;10:53-57.
[58] Ryan, CF; Love, LL; Peat, D; Fleetham, JA; Lowe, AA. Mandibular advancement oral appliance therapy for obstructive sleep apnoea: effect on awake calibre of the velopharynx. Thorax, 1999:54:972-977.
[59] Yoshida, K. Effect of a prosthetic appliance for sleep apnea syndrome on masticatory and tongue muscle activity. J Prosthet Dent, 1998;79:537-544.
[60] Tsuiki, S; Ono, T; Kuroda, T. Mandibular advancement modulates respiratory-related genioglossus electromyographic activity. Sleep Breath, 2000;4:53-54.
[61] Mehta, A; Qian, J; Petocz, P; Darendeliler, MA; Cistulli PA. A randomized, controlled study of a mandibular advancement splint for obstructive sleep apnea. Am J Respir Crit Care Med, 2001;163:1457-1461.
[62] Gotsopoulos, H; Chen, C; Qian, J; Cistulli PA. Oral appliance therapy improves symptoms in obstructive sleep apnea: a randomized, controlled trial. Am J Respir Crit Care Med, 2002;166:743-748.
[63] Ng, AT; Gotsopoulos, H; Qian, J; Cistulli, PA. Effect of oral appliance therapy on upper airway collapsibility in obstructive sleep apnea. Am J Respir Crit Care Med, 2003;168:238-241.
[64] Rechtschaffen, A; Kales, A. A manual of standardized terminology, techniques and scoring system for sleep states of human subjects. NIH publication number 204, Washington, U.S. Government Printing Office, 1968.
[65] O'Sullivan, RA; Hillman, DR; Mateljan, R; Pantin, C; Finucane, KE. Mandibular advancement splint: an appliance to treat snoring and obstructive sleep apnea. Am J Respir Crit Care Med, 1995;151:194-198.
[66] Yoshida, K. Effect on blood pressure of oral appliance therapy for sleep apnea syndrome. Int J Prosthodont, 2006:19;61-66.
[67] Carskadon, MA; Dement, WC. Normal human sleep: an overview. In: Kryger MH, Roth T, Dement WC, editors, Principles and practice of sleep medicine, Second edition. Philadelphia: WB Saunders, 1994;16-25.
[68] Giles, TL; Lasserson, TJ; Smith, BJ; White, J; Wright, J; Cates, CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev, 2006.
[69] Grote, L; Ploch, T; Heitmann, J; Knaack, L; Penzel, T; Peter, JH. Sleep-related breathing disorder is an independent risk factor for systemic hypertension. Am J Respir Crit Care Med, 1999;160:1875-1882.
[70] Peppard, PE; Young, T; Palta, M; Skatrud, J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med, 2000;342:1378-1384.
[71] Jennum, P; Wildschiodtz, G; Christensen, NJ; Schwartz, T. Blood pressure, catecholamines, and pancreatic polypeptide in obstructive sleep apnea with and without nasal continuous positive airway pressure (nCPAP) treatment. Am J Hypertens, 1989 2:847-852.
[72] Wilcox, I; Grunstein, RR; Hedner, JA; Doyle, J; Collins, FL; Fletcher, PJ; Kelly, DT; Sullivan, CE. Effect of nasal continuous positive airway pressure during sleep on 24-hour blood pressure in obstructive sleep apnea. Sleep, 1993;16:539-544.
[73] Voogel, AJ, van Steenwijk, RP; Karemaker, JM; van Montfrans, GA. Effects of treatment of obstructive sleep apnea on circadian hemo-dynamics. J Auton Nerv Syst, 1999;77:179-183.
[74] Engleman, HM; Gough, K; Martin, SE; Kingshott, RN; Padfield, PL; Douglas, NJ. Ambulatory blood pressure on and off continuous positive airway pressure therapy for the sleep apnea/hypopnea syndrome: effects in “non-dippers”. Sleep, 1996;19:378-381.
[75] Dimsdale, JE; Loredo, JS; Profant, J. Effect of continuous positive airway pressure on blood pressure: a placebo trial. Hypertension, 2000;35:144-147.
[76] Barnes, M; McEvoy, RD; Banks, S; Tarquinio, N; Murray, CG; Vowles, N; Pierce, RJ. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am J Respir Crit Care Med, 2004;170:656-664.
[77] Faccenda, JF; Mackay, TW; Boon, NA; Douglas, NJ. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med, 2001;163:344-348.
[78] Pepperell, JC; Ramdassingh-Dow, S; Crosthwaite, N; Mullins, R; Jenkinson, C; Stradling, JR, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomized parallel trial. Lancet, 2002;359:204-210.
[79] Becker, HF; Jerrentrup, A; Ploch, T; Grote, L; Penzel, T; Sullivan, CE, Becker, JH. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation, 2003;107:68-73.
[80] Gotsopoulos, H; Kelly, JJ; Cistulli, PA. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep, 2004;27:934-941.
[81] Lam, B; Sam, K; Mok, WY; Cheung, MT; Fong, DY; Lam, JC; Lam, DC; Yam, LY; Ip, MS. Randomised study of three non-surgical treatments in mild to moderate obstructive sleep apnoea. Thorax, 2007;62:354-359.
[82] MacMahon, S; Peto, R; Cutler, J; Collins, R; Sorlie, P; Neaton, J; Abbott, R; Godwin, J; Dyer, A; Stamler, J. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet, 1990;335:765-774.
[83] Cohen, MC; Rohtla, KM; Lavery, CE; Muller, JE; Mittleman, MA. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am Heart J, 1997;79:1512-1515.
[84] Elliot, WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke, 1998;29:992-996.
[85] Carlson, JT; Hedner, J; Elam, M; Ejnell, H; Sellgren, J; Wallin, BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest, 1993;103:1763-1768.
[86] Hla, KM; Young, TB; Bidwell, T; Palta, M; Skatrud, JB; Dempsy, J. Sleep apnea and hypertension: a population-based study. Ann Intern Med, 1994;120:382-388.
[87] Millman, RP; Redline, S; Carlisle, CC; Assaf, AR; Levinson, PD. Daytime hypertension in obstructive sleep apnoea: prevalence and contributing factors. Chest, 1991;99:861-866.
[88] Otsuka, R; Ribeiro de Almeida, F; Lowe, AA; Linden, W; Ryan, F. The effect of oral appliance therapy on blood pressure in patients with obstructive sleep apnea. Sleep Breath, 2006;10:29-36.
[89] Yoshida, K. A polysomnographic study on influence of masticatory and tongue muscle activity in occurrence of sleep apnea. J Oral Rehabil, 1998;25:603-609.
[90] Johns, MW. A new method for measuring daytime sleepiness, the Epworth sleepiness scale. Sleep 1991;14:540-545.
[91] Carskadon, MA; Dement, WC; Mitler, MM; Roth, T; Westbrook, PR; Keenan, S. Guidelines for the multiple sleep latency test (MSLT): a standard measure of sleepiness. Sleep, 1986;9:519-524.
[92] Loube, DI; Andrada, TF. Comparison of respiratory polysomnographic parameters in matched cohorts of upper airway resistance and obstructive sleep apnea syndrome patients. Chest, 1999;115:1519-1524.
[93] Bahammam, AS; Tate, R; Manfreda, J; Kryger, MH. Upper airway resistance syndrome: effect of nasal dilation, sleep stage, and sleep position. Sleep, 1999;22:592-598.
[94] Almeida, FR; Lowe, AA; Sung, JO; Tsuiki, S; Otsuka, R. Long-term sequellae of oral appliance therapy in obstructive sleep apnea patients: Part 1. Cephalometric analysis. Am J Orthod Dentofacial Orthop, 2006;129:195-204.
[95] Almeida, FR; Lowe, AA; Otsuka, R; Fastlicht, S; Farbood, M; Tsuiki, S. Long-term sequellae of oral appliance therapy in obstructive sleep apnea patients: Part 2. Study-model analysis. Am J Orthod Dentofacial Orthop, 2006;129:205-213.
[96] Harper, R; Sauerland, EK. The role of the tongue in sleep apnea. In: Guilleminault C, Dement WC, editors, Sleep apnea syndromes, New York: Alan R. Liss, 1978:219-234.
[97] Yoshida, K. Influence of sleep posture on response to oral appliance therapy for sleep apnea syndrome. Sleep, 2001;24:538-544.
[98] Remmers, JE; deGroot, WJ; Sauerland, EK; Anch, AM. Pathogenesis of upper airway occlusion during sleep. J Appl Physiol, 1978;44:931-938.
[99] Yoshida, K. Kau- und Zungenmuskelaktivität während des Schlafens bei Patienten mit Schlafapnoesyndrom. In: Struppler A, editor, Motodiagnostik-Mototherapie II, Jena: Jena University Press, 1994:161-164.
[100]Kovacenic-Ristanovic, R; Alger, G; Cartwright, R. Cephalometric analysis in positional sleep apneics. Sleep Res, 1989;18:249.
[101]Dwyer, T; Ponsoby, ALB; Newman, NM; Gibbons, LE. Prospective cohort study of prone sleeping position and sudden infant death syndrome. Lancet, 1991;337:1244-1247.
[102]Tonkin, S. Sudden infant death syndrome: hypothesis of causation. Pediatrics, 1975;55:650-661.
[103]Tonkin, SL; Partridge, J. The pharyngeal effect of partial nasal obstruction. Pediatrics, 1979;63:261-271.
[104]Hillarp, B; Nylander, G; Rosén, I; Wickström, O. Videoradiography of patients with habitual snoring and/or sleep apnea. Acta Radiol, 1996;37:307-314.
[105]Cartwright, R. Effect of sleep position on sleep apnea severity. Sleep, 1984;7:110-114.
[106]Kavey, NB; Blitzer, A; Gidro-Frank, S; Korstanje, K. Sleeping position and sleep apnea syndrome. Am J Otolaryngol, 1985;6:373-377.
[107]George, CF; Millar, TW; Kryger, MH. Sleep Apnea and body position during sleep. Sleep, 1988;11:90-99.
[108]Grote, L; Hedner, J; Grunstein, R; Kraiczi, H. Therapy with nCPAP: incomplete elimination of Sleep Related Breathing Disorder. Eur Respir J, 2000;16:921-927.
[109]Thumm, J; Siebert, GK; Mylonas, T; Yoshida, K; Meier-Ewert, K. Langzeitakzeptanz von Esmarch-Schiene bei Patienten mit obstruktiven Schlaf-Apnoe-Syndrom. Zahnärztl Welt, 1995;104:458-462.
[110]Report of the American Sleep Disorders Association. Practice parameters for the treatment of snoring and obstructive sleep apnea in adults: the efficacy of surgical modifications of the upper airway. Sleep, 1996;19:152-155.
[111]Powell, NB; Riley, RW; Guilleminault, C. Surgical management of sleep-disordered breathing. In: Principles and practice of sleep medicine. Fourth edition. Kryger MH, Roth T, Dement WC, editors. Elsevier Saunders. 2005;1081-1097.
[112]Prinsell, JR. Maxillomandibular advancement surgery in a site-specific treatment approach for obstructive sleep apnea in 50 consecutive patients. Chest, 1999;116:1519-1529.
[113]Nishida, M; Iizuka, T; Murakami, K; Kawamura, K; Hyo, Y; Ono, T. Surgical correction of severe retrognathia associated with respiratory distress in an adult patient: report of a case. Jpn J Jaw Deform 1986;5:22-24.
[114]Hochban, W; Conradt, R; Brandenburg, U; Heitmann, J; Peter, JH. Surgical maxillofacial treatment of obstructive sleep apnea. Plast Reconstr Surg, 1997;99:619-626.
[115]Bettega, G; Pepin, JL; Veale, D; Deschaux, C; Raphael, B; Levy, P. Obstructive sleep apnea syndrome. Fifty-one consecutive patients treated by maxillofacial surgery. Am J Respir Crit Care Med, 2000;162:641-649.
[116]Prinsell, J. R. Maxillomandibular advancement surgery for obstructive sleep apnea syndrome. J Am Dent Assoc, 2002;133:1489-1497.
[117]Waite, PD; Wooten, V; Lachner, J; Guyette, RF. Maxillomandibular advancement surgery in 23 patients with obstructive sleep apnea syndrome. J Oral Maxillofac Surg, 1989;47:1256-1261.
[118]Obwegeser, H. The indication for surgical correction of mandibular deformity by the sagittal splitting technique. Brit J Oral Surg, 1964;1:157-171.
[119]Moore, MH; Guzman-Stein, G; Proudman, TW; Abbott, AH; Netherway, DJ. Mandibular lengthening by distraction for airway obstruction in Treacher-Collins syndrome. J Craniofac Surg, 1994;5:22-25.
[120]Cohen, SR; Simms, C; Burstein, FD. Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial deformities. Plast Reconstr Surg, 1998;101:312-318.
[121]Li, KK; Powell, NB; Riley, RW; Guilleminault, C. Distraction osteogenesis in adult obstructive sleep apnea surgery: a preliminary report. J Oral Maxillofac Surg, 2002;60:6-10.
[122]Shimizu, I; Takahashi, K; Murakami, K; Yokoe, Y; Iizuka, T. Retromandible with temporomandibular joint disorders treated by distraction osteogenesis to prevent progressive condylar resorption - a case report -. Jpn J Jaw Deform 2004;14:75-82.
[123]Clinical Periodontology and Implant Dentistry. Lindeh, J. Karring T, Lang NP, editors. Munksgaard: Blackwell, 2005.
[124]Yoshida, K. Oral hygiene and sleep. The Japanese Society of Sleep Research, editor. Sleep Medicine, Tokyo: Asakura Shoten, 2009; 644-648.
[125]Saito, T; Shimazaki, Y; Sakamoto, M. Obesity and periodontitis. N Engl J Med, 339: 482-483, 1997.
[126]Iwamoto, Y; Nishimura, F; Nakagawa, M; Sugimoto, H; Shikata, K; Makino, H; Fukuda, T; Tsuji, T; Iwamoto, M; Murayama, Y. The effect of antimicrobial treatment on circulating tumor necrosis factor-alpha and glycated hemoglobin level in patients with type 2 diabetes. J Periodontol, 2001;72:774-778.
[127]Uysal, KT; Wiesbrock, SM; Marino, MW; Hotamisligil, GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 1997;389:610-614.
[128]Rattazzi, M; Puato, M; Faggin, E; Bertipaglia, B; Zambon, A; Pauletto, P. C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders? J Hypertens, 2003;21:1787-1803.
[129]Lakka, HM; Laaksonen, DE; Lakka, TA; Niskanen, LK; Kumpusalo, E; Tuomilehto, J; Salonen, JT. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002;288:2709-2716.
[130]Yoshida, K; Kaji, R; Hamano, T; Kohara, N; Kimura, J; Shibasaki, H, et al. Cortical potentials associated with voluntary mandibular movements. J Dent Res, 2000;79:1514-1518.
[131]Yoshida, K; Iizuka, T. Contingent negative variation for voluntary mandibular movements in humans. J Oral Rehabil, 2005:32;871-879.
[132]Yoshida, K; Maezawa, H; Nagamine, T; Fukuyama, H; Murakami, K; Iizuka, T. Somatosensory evoked magnetic fields to air-puff stimulation on the soft palate. Neurosci Res, 2006:55;116-122.
[133]Larson, CR; Byrd, KE; Garthewaite, CR; Luschei, ES. Alterations in the pattern of mastication after ablations of the lateral precentral cortex in rhesus macaques. Exp Neurol, 1980;70:638-651.
[134]Lund, JP; Lamarre, Y. Activity of neurons in the lower precentral cortex during voluntary and rhythmical jaw movements in the monkey. Exp Brain Res, 1974;19:282-299.
[135]Hoffman, DS; Luschei, ES. Responses of monkey precentral cortical cells during a controlled jaw bite task. J Neurophysiol, 1980;44:333-348.
[136]Hollowell, DE; Suratt, PM. Mandible position and activation of submental and masseter muscles during sleep. J Appl Physiol, 1991;71:2267-2273.
[137]Sauerland, EK; Sauerland, BAT; Orr, WC; Harrison, LE. Non-invasive electromyography of human genioglossal (tongue) activity. Electromyogr Clin Neurophysiol, 1981;21:279-286.
[138]Morikawa, S; Safar, P; Decarlo, J. Influence of the head-jaw position upon upper airway patency. Anesthesiology, 1961;22:265-270.
[139]White, D.P. Central sleep apnea. Med Clin North Am, 1985;69:1205-1219.
[140]Önal, E; Lopata, M; O’Connor, TD. Poathogenesis of apneas in hypersomnia-sleep apnea syndrome. Am Rev Respir Dis, 1982;125:167-174.
[141]Kornhuber, HH; Deecke, L. Hirnpotentialänderungen bei Wirkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftpotential und reafferente Potentiale. Pflügers Arch ges Physiol, 1965;284:1-17.
[142]Shibasaki, H; Barrett, G; Halliday, E; Halliday, AM. Components of the movement-related cortical potential and their scalp topography. Electroencephalogr Clin Neurophysiol, 1980;49:213-226.
[143]Ikeda, A; Shibasaki, H. Invasive recording of movement-related cortical potentials in humans. J Clin Neurophysiol, 1992;9:509-520.
[144]Shibasaki, H. Movement-related cortical potentials. In: Halliday AM editor. Evoked Potentials in Clinical Testing. Second ed. Edinburgh: Churchill Livingston, 1993;523-537.
[145]Nakajima, I; Tanaka, Y; Uchida, A; Sakai, T; Akasaka, M; Mori, A; Sumino, R. Cortical potentials associated with voluntary movement in humans. Neurosci Res, 1991;10:285-289.
[146]Wohlert, AB. Event-related brain potentials preceding speech and nonspeech oral movements of varying complexity. J Speech Hear Res, 1993;36:897-905.
[147]Ikeda, A; Lüders, HO; Burgess, RC; Sakamoto, A; Klem, GH; Morris, HH; Shibasaki, H. Generator locations of movement-related potentials with tongue protrusion and vocalizations: subdural recording in human. Electroencephalogr Clin Neurophysiol, 1995;96:310-328.
[148]Oldfield, RC. The assessment and analysis of handedness: the Edingburgh inventory. Neuropsychologia, 1971;9:97-113.
[149]Yoshida, K. An electromyographic study on the superior head of the lateral pterygoid muscle during mastication from the standpoint of condylar movement. J Jpn Prosthodont Soc, 1992;36:340-350.
[150]Yoshida, K. Eigenschaften der Kaumuskelaktivität während verschiedener Unterkieferbewegungen bei Patienten mit Diskusverlagerungen ohne Reposition. Stomatologie, 1999;96:107-121.
[151]Christensen, LV; Radue, JT. Lateral preference in mastication: a feasibility study. J Oral Rehabil 1985;12:421-427.
[152]Barrett, G; Shibasaki, H; Neshige, R. A computer-assisted method for averaging movement-related cortical potentials with respect to EMG onset. Electroencephalogr Clin Neurophysiol, 1985;60:276-281.
[153]Grözinger, B; Kornhuber, H. H; Kriebel, J (1977). Human cerebral potentials preceding speech production, phonation, and movements of the mouth and tongue, with reference to respiratory and extracerebral potentials. In: Desmedt JE, editor. Language and Hemispheric Specialization in Man: Cerebral ERPs. Prog Clin Neurophysiol, Vol. 3, Basel: Karger; 1977 87-103.
[154]Brooker, BH; Donald, MW. Contribution of the speech musculature to apparent human EEG asymmetries prior to vocalization. Brain Lang, 1980;9:226-245.
[155]Deecke, L; Engel, M; Lang, W; Kornhuber, HH. Bereitschaftspotentials preceding speech after breath holding. Exp Brain Res, 1986;65:219-223.
[156]Neshige, R; Lüders, H; Shibasaki, H. Recording of movement-related potentials from scalp and cortex in man. Brain, 1988;111:719-736.
[157]Shibasaki, H; Barrett, G; Halliday, E; Halliday, AM. Cortical potentials associated with voluntary foot movement in man. Electroencephalogr Clin Neurophysiol, 1981;49:213-226.
[158]Kitamura, J; Shibasaki, H; Kondo, T. A cortical slow potential is larger before an isolated movement of a single finger than simultaneous movement of two fingers. Electroencephalogr Clin Neurophysiol, 1993;86:252-258.
[159]Benecke, R; Dick, JPR; Rothwell, JC; Day, BL; Marsden, CD. Increase of the Bereitschaftspotential in simultaneous and sequential movements. Electroencephalogr Clin Neurophysiol, 1985;62:347-352.
[160]Simonetta, M; Clanet, M; Rascol, O. Bereitschaftspotentials in a simple movement or in a motor sequence starting with the same simple movement. Electroencephalogr Clin Neurophysiol, 1991;81:129-134.
[161]Kristeva, R. Bereitschaftspotential of pianists. In: Karrer R, Cohen J, Tueting P, editors. Brain and Information: Event-Related Potentials. New York: Acad. Sci., 1984;425:477-482.
[162]Walter, WG; Cooper, R; Aldridge, VJ; McCallum, WC; Winter, AL. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature, 1964;203:380-384.
[163]Brunia, CH. Movement and stimulus preceding negativity. Biol Psychol, 1988;26:165-178.
[164]Rosahl, SK; Knight, RT. Role of prefrontal cortex in generation of the CNV. Cereb Cortex, 1995;2:123-134.
[165]Gaillard, AW. Effects of warning signal modality on the contingent negative variation (CNV). Biol Psychol, 1976;4:139-154.
[166]Rohrbaugh, JW; Syndulko, K; Lindsley, DB. Cortical slow negative waves following non-paired stimuli: effects of modality, intensity and rate of stimulation. Electroencephalogr Clin Neurophysiol, 1979;46:416-427.
[167]Brunia, CHM; Damen, EJP. Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalogr Clin Neurophysiol, 1988;69:234-243.
[168]Verleger, R; Wauschkuhn, B; Van der Lubbe, RHJ; Jaskowski, P; Trillenberg, P. Posterior and anterior contributions of hand-movement preparation to late CNV. J Psychophysiol, 2000;14:69-86.
[169]Ikeda, A; Lüders, HO; Collura, TF; Burgess, RC; Morris, HH; Hamano, T; Shibasaki H. Subdural potentials at orbitofrontal and mesial prefrontal areas accompanying anticipation and decision making in humans: a comparison with Bereitschaftspotential. Electroencephalogr Clin Neurophysiol, 1996;98:206-212.
[170]Ikeda, A; Shibasaki, H; Kaji, R; Terada, K; Nagamine, T; Honda, M; Kimura J. Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism. Electroencephalogr Clin Neurophysiol, 1997;102:142-151.
[171]Kaji, R; Ikeda, A; Ikeda, T; Kubori, T; Mezaki, T; Kohara, N; Kanda, M; Nagamine, T; Honda, M; Rothwell, JC; Kimura, J. Physiological study of cervical dystonia: Task-specific abnormality in contingent negative variation. Brain, 1995;118:511-522.
[172]Hamano, T; Kaji, R; Katayama, M; Kubori, T; Ikeda, A; Shibasaki, Kimura, J. Abnormal contingent negative variation in writer's cramp. Electroencephalogr Clin Neurophysiol, 1999;110:508-515.
[173]Deuschl, G; Toro, C; Matsumoto, J; Hallett, M. Movement-related cortical potentials in writer's cramp. Ann Neurol, 1995;38:862-868.
[174]Van der Kamp, W; Rothwell, JC; Thompson, PD; Day, BL; Marsden, CD. The movement-related cortical potential is abnormal in patients with idiopathic torsion dystonia. Mov Disord, 1995;10:630-633.
[175]Yoshida, K; Kaji, R; Kohara, N; Murase, N; Ikeda, A; Shibasaki, H, Iizuka, T. Movement-related cortical potentials before jaw excursions in oromandibular dystonia. Mov Disord, 2003;18:94-100.
[176]Yoshida, K; Kaji, R; Hamano, T; Kohara, N; Kimura, J; Iizuka T. Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth opening movements in human subjects. Arch Oral Biol, 1999;44:183-190.
[177]Hamano, T; Lüders, HO; Ikeda, A; Collura, TF; Comair, YG; Shibasaki, H. The cortical generators of the contingent negative variation in humans: a study with subdural electrodes. Electroencephalogr Clin Neurophysiol, 1997;104:257-268.
[178]Yazawa, S; Shibasaki, H; Ikeda, A; Terada, K; Nagamine, T; Honda, M. Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation. Electroencephalogr Clin Neurophysiol, 1997;105:390-399.
[179]Lai, C; Ikeda, A; Terada, K; Nagamine, T; Honda, M; Xu, X, et al. Event-related potentials associated with judgment: comparison of S1 and S2 choice conditions in a contingent negative variation (CNV) paradigm. J Clin Neurophysiol, 1997;14:394-405.
[180]Cui, RQ; Egkher, A; Huter, D; Lang, W; Lindinger, G; Deecke, L. High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Clin Neurophysiol, 2000;111:1847-1859.
[181]Oishi, M; Mochizuki, Y. Correlation between contingent negative variation and movement-related cortical potentials in parkinsonism. Electroencephalogr Clin Neurophysiol, 1995;95:346-349.
[182]Lamarche, M; Louvel, J; Buser, P; Rektor, I. Intracerebral recordings of slow potentials in a contingent negative variation paradigm: in exploration in epileptic patients. Electroencephalogr Clin Neurophysiol, 1995;95:268-276.
[183]Delse, FC; Marsh, GR; Thompson, LW. CNV correlates of task difficulty and accuracy of pitch discrimination. Psychophysiology, 1972;9:139-154.
[184]Low, MD; Mcsherry, JW. Further observations of psychological factors involved in CNV genesis. Electroencephalogr Clin Neurophysiol, 1968;25:203-207.
[185]Nakamura, M; Fukui, Y; Kadobayashi, I; Kato, N. A comparison of the CNV in young and old subjects: its relation to memory and personality. Electroencephalogr Clin Neurophysiol, 1979;46:337-344.
[186]Glanzmann, P; Froehlich, WD. Anxiety, stress, and contingent negative variation reconsidered. Ann N Y Acad Sci, 1984;425:578-584.
[187]Ikeda, A; Shibasaki, H; Kaji, R; Terada, K; Nagamine, T; Honda, M; Hamano, T; Kimura, J. Abnormal sensorimotor integration in writer's cramp: study of contingent negative variation. Mov Disord, 1996;11:683-960.
[188]Nakajima, I; Miyauchi, M; Minowa, K; Akasaka, M; Uchida, A. Contingent negative variations associated with jaw opening in humans. Somatosensory Motor Res, 1994;11:149-152.
[189]Ohsawa, K; Yamaguchi, T; Murata, N; Kanazawa, K; Uchida, A; Nakajima, I. Contingent negative variations associated with vocalization in humans. No To Shinkei, 1996;48:357-361.
[190]Nagai, Y; Critchley, HD; Featherstone, E; Fenwick, PB; Trimble, MR; Dolan, RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage, 2004;21:1232-1241.
[191]McAdam, DW; Seale, DM. Bereitschaftspotential enhancement with increased level of motivation. Electroencephalogr Clin Neurophysiol, 1969;27:73-75.
[192]Yoshida, K; Kaji, R; Kubori, T; Kohara, N; Iizuka, T; Kimura, J. Muscle afferent block for the treatment of oromandibular dystonia. Mov Disord, 1998;13:699-705.
[193]Yoshida, K; Kaji, R; Shibasaki, H; Iizuka, T. Factors influence the therapeutic effect of muscle afferent block for oromandibular dystonia and dyskinesia: implications for their distinct pathophysiology. Int J Oral Maxillofac Surg, 2002;31:499-505.
[194]Yoshida, K; Iizuka, T. Jaw deviation dystonia evaluated by movement-related cortical potentials and treated with muscle afferent block. J Craniomandib Pract, 2003;21:295-300.
[195]Penfield, W; Rasmussen, T. The cerebral cortex of man: a clinical study of localization of function. Macmillan, New York; 1952.
[196]McCarthy, G.; Allison, T; Spencer, DD. Localization of the face area of human sensorimotor cortex by intracranial recording of somatosensory evoked potentials. J Neurosurg, 1993;79:874-884.
[197]Karhu, J; Hari, R; Lu, S; Paetau, R; Rif, J. Neuromagnetic responses to lingual nerve stimulation. Electroencephalogr Clin Neurophysiol, 1991;80:459-468.
[198]Hari, R; Karhu, J; Hämäläinen, M; Knuutila, J; Salonen, O; Sams, M; Vilkman, V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci, 1993;5:724-734.
[199]Nakamura, A; Yamada, T; Goto, A; Kato, T; Ito, K; Abe, Y; Kachi, T; Kakigi, R. Somatosensory homunculus as drawn by MEG. Neuroimage, 1998;7:377-386.
[200]Yamashita, H; Kumamoto, Y; Nakashima, T; Yamamoto, T; Inokuchi, A; Komiyama, S. Magnetic sensory cortical responses evoked by tactile stimulations of the human face, oral cavity.
[201]Kakigi, R; Hoshiyama, M; Shimojo, M; Naka, D; Yamasaki, H; Watanabe, S; Xiang, J; Maeda, K; Lam, K; Itomi, K; Nakamura, A. The somatosensory evoked magnetic fields. Prog Neurobiol, 2000;61:495-523.
[202]Suzuki, T; Shibukawa, Y; Kumai, T; Shintani, M. Face area representation of primary somatosensory cortex in humans identified by whole-head magnetoencephalography. Jpn J Physiol, 2004;54:161-169.
[203]Nakahara, H; Nakasato, N; Kanno, A; Murayama, S; Hatanaka, K; Itoh, H; Yoshimoto, T. Somatosensory-evoked fields for gingival, lip, and tongue. J Dent Res, 2004;83, 307-311.
[204]Nguyen, BT; Inui, K; Hoshiyama, M; Nakata, H; Kakigi, R. Face representation in the human secondary somatosensory cortex. Clin Neurophysiol, 2005;116:1247-1253.
[205]Lotze, M; Seggewies, G; Erb, M; Grodd, W; Birbaumer, N. The representation of articulation in the primary sensorimotor cortex. Neuroreport 2000;11:2985-2989.
[206]Ettlin, DA; Zhang, H; Lutz, K; Jarmann, T; Meier, D; Gallo, LM; Jancke, L; Palla, S. Cortical activation resulting from painless vibrotactile dental stimulation measured by functional magnetic resonance imaging (fMRI). J Dent Res, 2004;83:757-761.
[207]Miyamoto, JJ; Honda, M; Saito, DN; Okada, T; Ono, T; Ohyama, K; Sadato, N. The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex, 2006;16:669-675.
[208]Civardi, C; Naldi, P; Cantello, R. Cortico-motoneurone excitability in patients with obstructive sleep apnoea. J Sleep Res, 2004;13:159-163.
[209]Friberg, D; Gazelius, B; Hokfelt, T; Nordlander, B. Abnormal afferent nerve endings in the soft palatal mucosa of sleep apneics and habitual snorers. Regul Pept, 1997;71:29-36.
[210]Friberg, D; Ansved, T; Borg, K; Carlsson-Nordlander, B; Larsson, H; Svanborg, E. Histological indications of a progressive snorers disease in an upper airway muscle. Am J Respir Crit Care Med, 1998;157:586-593.
[211]Kimoff, RJ; Sforza, E; Champagne, V; Ofiara, L; Gendron, D. Upper airway sensation in snoring and obstructive sleep apnea. Am J Respir Crit Care Med, 2001;164:250-255.
[212]Guilleminault, C; Li, K; Chen, NH; Poyares, D. Two-point palatal discrimination in patients with upper airway resistance syndrome, obstructive sleep apnea syndrome, and normal control subjects. Chest, 2002;122:866-870.
[213]Hashimoto, I. From input to output in the somatosensory system for natural air-puff stimulation of the skin. Electroencephalogr Clin Neurophysiol, 1999; Suppl. 49:269-283.
[214]Ahonen, AI; Hämäläinen, MS; Kajola, MJ; Knuutila, JET; Laine, PP; Lounasmaa, OV; Simola, J; Tesche, C; Vilkman, V. 122-channel SQUID instrument for investigating the magnetic signals from the human brain. Physica Scripta, 1993;T49, 198-205.
[215]Nagamine, T; Kajola, M; Salmelin, R; Shibasaki, H; Hari, R. Movement-related slow cortical magnetic fields and changes of spontaneous MEG- and EEG-brain rhythms. Electroenceph Clin Neurophysiol, 1996;99:274-286.
[216]Hämäläinen, M; Hari, R; Ilmoniemi, RJ; Knuutila, J; Lounasmaa, OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys, 1993;65:413–498.
[217]Maloney, SR; Bell, WL; Shoaf, SC; Blair, D; Bastings, EP, Good, DC; Quinlivan, L. Measurement of lingual and palatine somatosensory evoked potentials. Clin Neurophysiol, 2000;111:291-296.
[218]McCarthy, G; Allison, T. Trigeminal evoked potentials in somatosensory cortex of the Macaca mulatta. J Neurosurg, 1995;82:1015-1020.
[219]Maeda, K; Kakigi, R; Hoshiyama, M; Koyama, S. Topography of the secondary somatosensory cortex in humans: a magnetoencephalographic study. Neuroreport, 1999;10:301-306.
[220]Loose, R; Schnitzler, A; Sarkar, S; Schmitz, F; Volkmann, J; Frieling, T, Freund, HJ; Witte, OW; Enck, P. Cortical activation during oesophageal stimulation: a neuromagnetic study. Neurogastroenterol Mot, 1999;11:163-171.
[221]and flap reconstructions of the tongue. Eur Arch Otorhinolaryngol, 1999;256(Suppl 1):S42-S46.
[222]Schnitzler, A; Volkmann, J; Enck, P; Frieling, T; Witte, OW; Freund, HJ. Different cortical organization of visceral and somatic sensation in humans. Eur J Neurosci, 1999;11:305-315.
[223]Hari, R; Forss, N. Magnetoencephalography in the study of human somatosensory cortical processing. Phil Trans R Soc Lond, 1999;354:1145-1154.
[224]Birn, RM; Bandettini, PA; Cox, RW; Shaker, R. Event-related fMRI of tasks involving brief motion. Hum Brain Mapp, 1999;7:106-114.
[225]Chance, B; Zhuang, Z; UnAh, C; Alter, C; Lipton, L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA, 1993;90:3770-3774.
[226]Strangman, G; Culver, JP; Thompson, JH; Boas, DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage, 2002;17:719-731.
[227]Miyamoto, I; Yoshida, K; Tsuboi, Y; Iizuka, T. Rehabilitation with dental prosthesis can increase cerebral regional blood flow. Clin Oral Impl Res, 2005;16:723-727.
[228]Frostig, RD; Lieke, EE; Ts'o, DY; Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci USA, 1990;87:6082-6086.
[229]Villringer, A; Chance, B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci, 1997,20:435-442.
[230]Penfield, W; Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 1937;60:389-443.
[231]Nakamura, Y; Katakura, N. Generation of masticatory rhythm in the brainstem. Neurosci Res, 1995;23:1-19.
[232]Catania, KC; Remple, MS. Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl Acad Sci USA, 2002;99:5692-5697.
[233]Godde, B; Berkefeld, T; David-Jurgens, M; Dinse, HR. Age-related changes in primary somatosensory cortex of rats: evidence for parallel degenerative and plastic-adaptive processes. Neuroscie Biobehav Rev, 2002;26:743-752.
[234]Terasawa, H; Hirai, T; Ninomiya, T; Ikeda, Y; Ishijima, T; Yajima, T; Hamaue, N; Nagase, Y; Kang, Y; Minami, M. Influence of tooth-loss and concomitant masticatory alterations on cholinergic neurons in rats: immunohistochemical and biochemical studies. Neurosci Res, 2002;43:373-379.
[235]Ikeda, M; Brown, J; Holland, AJ; Fukuhara, R; Hodges, JR. Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer's disease. J Neurol, Neurosurg Psychiatry, 2002;73:371-376.
[236]Eker, C; Hagstadius, S; Linden, A; Schalen, W; Nordstrom, CH. Neuropsychological assessments in relation to CBF after severe head injuries. Acta Neurol Scand, 2001;104:142-147.
[237]Décary, A; Rouleau, I; Montplaisir, J. Cognitive deficits associated with sleep apnea syndrome: a proposed neurophychological test battery. Sleep, 2000;23:369-381.
[238]Fulda, S; Schulz, H. Cognitive dysfunction in sleep disorders. Sleep Med Rev, 2001;5:423-445.
[239]Jones, K; Harrison, Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Med Rev, 2001;5:463-475.
[240]Suto, T; Fukuda, M; Ito, M; Uehara, T; Mikuni, M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry, 2004;55:501-511.