New paper: What if a magnet is equipped with wings and glides in the air?
"Robotic Metamorphosis by Origami Exoskeletons" by Shuhei Miyashita, Steven Guitron, Shuguang Li, and Daniela Rus was published in Science Robotics 2eaao4369.

Interested in joining the group?
  • PhD positions for year 2018 on 
    • Origami Robots for Bio-medicine
    • Self-Assembling Micro/Milli-Robots
    • Theory of Life
  • Intern students on
    • Self-Assembling Micro/Milli-Robots
    • Origami Robots for Bio-medicine

Related PhD call

Our research pursuit has been dedicated to formal understanding of synthesizing artificial compounds in non-molecular domains, seeking a novel manufacturing method of elecromechanical devices. 

Self-Assembling Origami Robots 
(University of York, MIT, 2012-present, NSF grants 1240383 and 1138967)

This project demonstrates a new approach to configure a miniature origami robot that folds up on the spot, accomplishes tasks, and disappears by degradation. 
  • Miyashita, S., Guitron, S., Li, S., and Rus D. (2017) Robotic Metamorphosis by Origami Exoskeletons, Science Robotics, 2 eaao4369.
    Link | Preprint PDF
  • Sung, R. C., Lin, R., Miyashita, S., Yim, S., Kim, S., and Rus, D. (2017) Self-folded Soft Robotic Structures with Controllable Joints, IEEE International Conference on Robotics and Automation (ICRA), pp. 580-587.
    Link | Preprint PDF
  • Miyashita, S., Guitron, S., Yoshida, K., Li, S., Damian, D. D., and Rus, D. (2016) Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds, IEEE International Conference on Robotics and Automation (ICRA), pp. 909-916.
    LinkPreprint PDF
  • Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C., and Rus, D. (2015) An Untethered Miniature Origami Robot that Self-folds, Walks, Swims, and Degrades, IEEE International Conference on Robotics and Automation (ICRA)pp. 1490-1496, Seattle, USA
    Link | Preprint PDF
  • Miyashita, S., DiDio, I., Ananthabhotla, I., An, B., Sung, C., Arabagi, S., and Rus, D. (2015) Folding Angle Regulation by Curved Crease Design for Self-Assembling Origami PropellersASME Journal of Mechanisms and Robotics, 7021013. 
    Link Preprint PDF
  • Miyashita, S., Meeker L., Tolley, T. M., Wood, J. R., and Rus, D. (2014) Self-Folding Miniature Elastic Electric DeviceThe IOP Journal Smart Materials and Structures23 094005, doi:10.1088/0964-1726/23/9/094005. 
    Link | Preprint PDF
  • Miyashita, S., Meeker, L., Goldi, M., Kawahara, Y., and Rus, D. (2014) Self-Folding Printable Elastic Electric Devices: Resistor, Capacitor, and Inductor. IEEE International Conference on Robotics and Automation (ICRA), pp. 1446-1453, Hong Kong.
    Link | Preprint PDF
  • Miyashita, S., Onal, D. C., and Rus, D. (2013) Self-pop-up Cylindrical Structure by Global Heating, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4065-4071, Tokyo, Japan.
    Link | Preprint PDF

Self-Assembling Micro/Milli Robots
(Carnegie Mellon University, 2011-2012, Swiss NSF Grant PBZHP2-133472)

In this project, we realized magnet based self-assembly micro-robots. We developed a remotely-applicable magnetic switch mechanism and realized targeted reconfiguration with four floating micro-modules. By using multiple magnetic materials, we achieve differential inter-modular interactions, regulated by externally applied magnetic fields. The technique features both molecular-inspired bottom-up approach and top-down engineering control approach.
  • Miyashita, S., Diller, E., and Sitti, M. (2013) Two-Dimensional Magnetic Micro-Module Reconfigurations Based on Inter-Modular InteractionsInternational Journal of Robotics Research, 32, 591-615. 
    LinkPreprint PDF
  • Diller, E., Miyashita, S., and Sitti, M. (2012). Wirelessly Addressable Magnetic Composite MicropumpsRSC Advances. 2 (9), 3850-3856.  
    LinkPreprint PDF
  • Diller, E., Miyashita, S., and Sitti, M., Magnetic Hysteresis for Multi-State Addressable Magnetic Microrobotic Control. (2012) In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal, October, pp. 2325-2331. (Acceptance rate: 45%). 
    LinkPreprint PDF

Tribolon: Scalable Self-Assembling Robot 
(University of Zurich, 2005-2010, Swiss NSF Grants 200021-105634 and 200020-118117). 

The goal of this project is to design "mechanical reactions" with non-molecular entities. The paper (J. Royal Soc. Interface) presents that "catalysis is possible with a non-molecular entity", also addressing the design principle.
  • Miyashita, S., Audretsch, C., Nagy, Z., Fuchslin, R., and Pfeifer, R. (2015) Mechanical Catalysis on the Centimeter Scale. Journal of the Royal Society Interface. 12: 20141271. 
    LinkPDF | Movie | Sppl. Mat. | download stl files
  • Miyashita, S. (2011) Effect of Morphology on Scalable Self-Assembling Robots -in Pursuit of Living Artificial Systems-. Ph.D. thesis, University of Zurich. 
  • Miyashita, S., Goldi, M., and Pfeifer, R. (2011) How reverse reactions influence the yield rate of stochastic self-assembly. International Journal of Robotics Research, 30, 627-641. 
    LinkPreprint PDF
  • Miyashita, S., Nagy, Z., Nelson, B. J., and Pfeifer, R. (2009) The influence of shape on parallel self-assembly. Entropy, 11, 643-666. 
    Link | PDF
  • Miyashita, S., Casanova, F., Lungarella, M., and Pfeifer, R. (2008) Peltier-Based Freeze-Thaw Connector for Waterborne Self-Assembly Systems. IEEE International Conference on Intelligent Robots and Systems (IROS), 1325-1330. 
    LinkPreprint PDF

    The brief overview of the project can be watched at: 

site stats