Home

       

       Dr. Shuhang Gu   

      

        Office: ETF C115

         Computer Vision Laboratory

        Sternwartstrasse 7, ETH Zentrum, CH - 8092 Zurich, Switzerland

        Email: shuhanggu@gmail.com


       



        Biography

I am currently working with Prof. Luc Van Gool as a postdoctoral researcher at the Computer Vision Laboratory, ETH Zurich, Switzerland. Before this, I obtained my PhD degree under the supervision of Prof. Lei Zhang from The Hong Kong Polytechnic University on 2017.

            


Selected Publications


Journal papers

    • J. Cai, S. Gu, L. Zhang, "Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images," in TIP 2018. (paper, code and dataset)
    • J. Jiao, Q. Yang, S. He, S. Gu, L. Zhang, "Joint Image Denoising and Disparity Estimation via Stereo Structure PCA and Noise-tolerant Cost," in IJCV 2017. (paper)
    • S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, L. Zhang, "Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision," in IJCV 2017. (paper, code_denoising, code_RPCA, code_MC)
    • W. Zuo, D. Ren, D. Zhang, S. Gu, L. Zhang, "Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution," in TIP 2016.
    • Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang, L. Zhang, "Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction," in TIP 2016. (paper)


Conference papers

    • S. Gu, Y. Li, Luc Van Gool, R. Timofte, "Self-Guided Network for Fast Image Restoration," in ICCV 2019
    • S. Gu, W. Li, Luc Van Gool, R. Timofte, "Fast Image Restoration with Multi-bin Trainable Linear Unit," in ICCV 2019
    • Y. Li*, S. Gu*, Luc Van Gool, R. Timofte, "Learning Filter Basis for Neural Network Compression," in ICCV 2019
    • S. Gu, D. Meng, W. Zuo, L. Zhang, "Joint Convolutional Analysis and Synthesis Sparse Representation for Single Image Layer Separation," in ICCV 2017 (papersup)(code)
    • S. Gu, W. Zuo, S. Guo, Y. Chen, C. Chen and L. Zhang, "Learning Dynamic Guidance for Depth Image Enhancement," in CVPR 2017. (paper, code)
    • K. Zhang, W. Zuo, S. Gu and L. Zhang, "Learning Deep CNN Denoiser Prior for Image Restoration," in CVPR 2017. (paper, code)
    • K. Wang, L. Lin, W. Zuo, S. Gu and L. Zhang, "Dictionary Pair Classifier Driven Convolutional Neural Networks for Object Detection," in CVPR 2016.
    • Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo and L. Zhang, "Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization," in CVPR 2016.
    • S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang. "Convolutional Sparse Coding for Image Super-resolution," in ICCV 2015. (paper, sup)
    • W. Zuo, D. Ren, S. Gu, L. Lin and L. Zhang, "Discriminative learning of iteration-wise priors for blind deconvolution," in CVPR 2015. (paper, sup)
    • S. Gu, L. Zhang, W. Zuo and X. Feng. "Projective dictionary pair learning for pattern classification." in NIPS 2014. (paper, sup, code)
    • S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted Nuclear Norm Minimization with Application to Image Denoising,” in CVPR 2014. (paper) (sup)(code)
    • S. Gu, N. Sang, F. Ma, "Fast image super resolution via local regression," in 2012 International Conference on Pattern Recognition (ICPR2012).


Technical Report

    • Q. Xie, D. Meng, S. Gu, L. Zhang, W. Zuo, X. Feng and Z. Xu, “On the Optimal Solution of Weighted Nuclear Norm Minimization,” Technical Report, arXiv: 1405.6012.(report)