### NumPy

http://wiki.scipy.org/Tentative_NumPy_Tutorial

import numpy as np
np.arange(10, 19).reshape(3,3)   # numbers from 10 to 18 in 3x3 matrix

1. Normalize a 5x5 random matrix (between 0 and 1)

```Z = np.random.random((5,5))
Zmax,Zmin = Z.max(), Z.min()
Z = (Z - Zmin)/(Zmax - Zmin)
print Z```
2. Consider two random array A anb B, check if they are equal.

```A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
equal = np.allclose(A,B)
print equal```
3. replace the maximum value by 0
```Z = np.random.random(10)
Z[Z.argmax()] = 0
print Z```
4. How to swap two rows of an array ?

```# Author: Eelco Hoogendoorn

A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print A```

Rows are horizontal and columns are vertical. Every row is an example, every column is a dimension.
inputs[10,5] is a matrix of 10 examples where each example has dimension 5.
If this would be the input of a neural network then the weights from the input to the first hidden layer would represent a matrix of size (5, #hid).

>>> a = numpy.asarray([[1., 2], [3, 4], [5, 6]])
>>> a
array([[ 1.,  2.],
[ 3.,  4.],
[ 5.,  6.]])
>>> a.shape
(3, 2)
>>> a[2,0]
5.0

Numpy does broadcasting of arrays of different shapes during arithmetic operations. What this means in general is that the smaller array (or scalar) is broadcasted across the larger array so that they have compatible shapes. The example below shows an instance of broadcastaing:

>>> a = numpy.asarray([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([2., 4., 6.])

The smaller array b (actually a scalar here, which works like a 0-d array) in this case is broadcasted to the same size as a during the multiplication.

 MATLAB numpy.array numpy.matrix Notes ndims(a) ndim(a) or a.ndim get the number of dimensions of a (tensor rank) numel(a) size(a) or a.size get the number of elements of an array size(a) shape(a) or a.shape get the "size" of the matrix size(a,n) a.shape[n-1] get the number of elements of the nth dimension of array a. (Note that MATLAB® uses 1 based indexing while Python uses 0 based indexing, See note 'INDEXING') [ 1 2 3; 4 5 6 ] array([[1.,2.,3.], [4.,5.,6.]]) mat([[1.,2.,3.], [4.,5.,6.]]) or mat("1 2 3; 4 5 6") 2x3 matrix literal [ a b; c d ] vstack([hstack([a,b]),         hstack([c,d])]) bmat('a b; c d') construct a matrix from blocks a,b,c, and d a(end) a[-1] a[:,-1][0,0] access last element in the 1xn matrix a a(2,5) a[1,4] access element in second row, fifth column a(2,:) a[1] or a[1,:] entire second row of a a(1:5,:) a[0:5] or a[:5] or a[0:5,:] the first five rows of a. This gives read-only access. a([2,4,5],[1,3]) a[ix_([1,3,4],[0,2])] rows 2,4 and 5 and columns 1 and 3. This allows the matrix to be modified, and doesn't require a regular slice. a(3:2:21,:) a[ 2:21:2,:] every other row of a, starting with the third and going to the twenty-first a(1:2:end,:) a[ ::2,:] every other row of a, starting with the first a(end:-1:1,:) or flipud(a) a[ ::-1,:] a with rows in reverse order a([1:end 1],:) a[r_[:len(a),0]] a with copy of the first row appended to the end a.' a.transpose() or a.T transpose of a a' a.conj().transpose() or a.conj().T a.H conjugate transpose of a a * b dot(a,b) a * b matrix multiply a .* b a * b multiply(a,b) element-wise multiply a./b a/b element-wise divide a.^3 a**3 power(a,3) element-wise exponentiation (a>0.5) (a>0.5) matrix whose i,jth element is (a_ij > 0.5) find(a>0.5) nonzero(a>0.5) find the indices where (a > 0.5) a(:,find(v>0.5)) a[:,nonzero(v>0.5)[0]] a[:,nonzero(v.A>0.5)[0]] extract the columms of a where vector v > 0.5 a(:,find(v>0.5)) a[:,v.T>0.5] a[:,v.T>0.5)] extract the columms of a where column vector v > 0.5 a(a<0.5)=0 a[a<0.5]=0 a with elements less than 0.5 zeroed out a .* (a>0.5) a * (a>0.5) mat(a.A * (a>0.5).A) a with elements less than 0.5 zeroed out a(:) = 3 a[:] = 3 set all values to the same scalar value y=x y = x.copy() numpy assigns by reference y=x(2,:) y = x[1,:].copy() numpy slices are by reference y=x(:) y = x.flatten(1) turn array into vector (note that this forces a copy) 1:10 arange(1.,11.) or r_[1.:11.] or r_[1:10:10j] mat(arange(1.,11.)) or r_[1.:11.,'r'] create an increasing vector see note 'RANGES' 0:9 arange(10.) or r_[:10.] or r_[:9:10j] mat(arange(10.)) or r_[:10.,'r'] create an increasing vector see note 'RANGES' [1:10]' arange(1.,11.)[:, newaxis] r_[1.:11.,'c'] create a column vector zeros(3,4) zeros((3,4)) mat(...) 3x4 rank-2 array full of 64-bit floating point zeros zeros(3,4,5) zeros((3,4,5)) mat(...) 3x4x5 rank-3 array full of 64-bit floating point zeros ones(3,4) ones((3,4)) mat(...) 3x4 rank-2 array full of 64-bit floating point ones eye(3) eye(3) mat(...) 3x3 identity matrix diag(a) diag(a) mat(...) vector of diagonal elements of a diag(a,0) diag(a,0) mat(...) square diagonal matrix whose nonzero values are the elements of a rand(3,4) random.rand(3,4) mat(...) random 3x4 matrix linspace(1,3,4) linspace(1,3,4) mat(...) 4 equally spaced samples between 1 and 3, inclusive [x,y]=meshgrid(0:8,0:5) mgrid[0:9.,0:6.] or meshgrid(r_[0:9.],r_[0:6.] mat(...) two 2D arrays: one of x values, the other of y values ogrid[0:9.,0:6.] or ix_(r_[0:9.],r_[0:6.] mat(...) the best way to eval functions on a grid [x,y]=meshgrid([1,2,4],[2,4,5]) meshgrid([1,2,4],[2,4,5]) mat(...) ix_([1,2,4],[2,4,5]) mat(...) the best way to eval functions on a grid repmat(a, m, n) tile(a, (m, n)) mat(...) create m by n copies of a [a b] concatenate((a,b),1) or hstack((a,b)) or column_stack((a,b)) or c_[a,b] concatenate((a,b),1) concatenate columns of a and b [a; b] concatenate((a,b)) or vstack((a,b)) or r_[a,b] concatenate((a,b)) concatenate rows of a and b max(max(a)) a.max() maximum element of a (with ndims(a)<=2 for matlab) max(a) a.max(0) maximum element of each column of matrix a max(a,[],2) a.max(1) maximum element of each row of matrix a max(a,b) maximum(a, b) compares a and b element-wise, and returns the maximum value from each pair norm(v) sqrt(dot(v,v)) or Sci.linalg.norm(v) or linalg.norm(v) sqrt(dot(v.A,v.A)) or Sci.linalg.norm(v) or linalg.norm(v) L2 norm of vector v a & b logical_and(a,b) element-by-element AND operator (Numpy ufunc) see note 'LOGICOPS' a | b logical_or(a,b) element-by-element OR operator (Numpy ufunc) see note 'LOGICOPS' bitand(a,b) a & b bitwise AND operator (Python native and Numpy ufunc) bitor(a,b) a | b bitwise OR operator (Python native and Numpy ufunc) inv(a) linalg.inv(a) inverse of square matrix a pinv(a) linalg.pinv(a) pseudo-inverse of matrix a rank(a) linalg.matrix_rank(a) rank of a matrix a a\b linalg.solve(a,b) if a is square linalg.lstsq(a,b) otherwise solution of a x = b for x b/a Solve a.T x.T = b.T instead solution of x a = b for x [U,S,V]=svd(a) U, S, Vh = linalg.svd(a), V = Vh.T singular value decomposition of a chol(a) linalg.cholesky(a).T cholesky factorization of a matrix (chol(a) in matlab returns an upper triangular matrix, but linalg.cholesky(a) returns a lower triangular matrix) [V,D]=eig(a) D,V = linalg.eig(a) eigenvalues and eigenvectors of a [V,D]=eig(a,b) V,D = Sci.linalg.eig(a,b) eigenvalues and eigenvectors of a,b [V,D]=eigs(a,k) find the k largest eigenvalues and eigenvectors of a [Q,R,P]=qr(a,0) Q,R = Sci.linalg.qr(a) mat(...) QR decomposition [L,U,P]=lu(a) L,U = Sci.linalg.lu(a) or LU,P=Sci.linalg.lu_factor(a) mat(...) LU decomposition (note: P(Matlab) == transpose(P(numpy)) ) conjgrad Sci.linalg.cg mat(...) Conjugate gradients solver fft(a) fft(a) mat(...) Fourier transform of a ifft(a) ifft(a) mat(...) inverse Fourier transform of a sort(a) sort(a) or a.sort() mat(...) sort the matrix [b,I] = sortrows(a,i) I = argsort(a[:,i]), b=a[I,:] sort the rows of the matrix regress(y,X) linalg.lstsq(X,y) multilinear regression decimate(x, q) Sci.signal.resample(x, len(x)/q) downsample with low-pass filtering unique(a) unique(a) squeeze(a) a.squeeze()