Sedi Bartz

I am an Assistant Professor at the Department of Mathematical Sciences at the University of Massachusetts Lowell. I research nonlinear functional analysis and variational analysis.

Contact: sedi_bartz@uml.edu


Papers:

  1. S. Bartz, H.H. Bauschke, J.M. Borwein, S. Reich and X. Wang: "Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative", Nonlinear Analysis 66 (2007), 1198-1223. (pdf from Heinz Bauschke's site)

  2. S. Bartz and S. Reich: "Minimal antiderivatives and monotonicity", Nonlinear Analysis 74 (2011), 59-66.

  3. S. Bartz and S. Reich: "Abstract convex optimal antiderivatives", Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire 29 (2012), 435-454. (arXiv link)

  4. S. Bartz and S. Reich: "Optimal pricing for optimal transport", Set-Valued and Variational Analysis 22 (2014), 467-481. (arXiv link)

  5. S. Bartz and S. Reich: "Some aspects of the representation of c-monotone operators by C-convex functions",Journal of Convex Analysis 22 (2015), 687-710.

  6. S. Bartz, H.H. Bauschke, S.M Moffat and X. Wang: "The resolvent average of monotone operators: dominant and recessive properties", SIAM Journal on Optimization 26 (2016), 602-634. (arXiv link)

  7. S. Bartz, H.H. Bauschke and X. Wang: "The resolvent order: a unification of the orders by Zarantonello, by Loewner, and by Moreau", SIAM Journal on Optimization 27 (2017), 466-477. (arXiv link)

  8. S. Bartz, H.H. Bauschke and X. Wang: "A class of multi-marginal c-cyclically monotone sets with explicit c-splitting potentials", Journal of Mathematical Analysis and Applications 461 (2018), 333-348. (arXiv link)

  9. S. Bartz, H.H. Bauschke, Hung M. Phan and X. Wang: "Multi-marginal maximal monotonicity and convex analysis", Mathematical Programming (Series A), (2019). (arXiv link)

  10. S. Bartz, R. Campoy, H.M. Phan: "Demiclosedness principles for generalized nonexpansive mappings", Jounal of Optimization Theory and Applications, 186 (2020), 759-778. (ArXiv link).