Recent Progress in Random Conformal Geometry

The last dec
ade has seen remarkable advancement in the understanding of planar lattice models and their scaling limits. A wide range of ideas and techniques from probability, analysis, and physics, including the SLE process, discrete complex analysis, random planar maps, quantum gravity, and conformal field theory, come together in this field. This two-day International Congress of Mathematicians satellite meeting will bring together leading researchers in these areas to interact and to present and discuss recent advances.



Organizing committee: Nam-Gyu Kang (SNU), Pierre Nolin (ETH), Fredrik Viklund (Uppsala/KTH). Please contact the organizers by sending us an email.

Scientific committee: Nikolai Makarov (CalTech), Steffen Rohde (University of Washington), Vladas Sidoravicius (Instituto Nacional de Matemática Pura e Aplicada, Brazil).

List of speakers

Tom Alberts (CalTech, USA),
Juhan Aru (ENS Lyon, France),
Alexei Borodin (MIT, USA),
Federico Camia (Vrije Universiteit, Netherlands),
Bertrand Duplantier (Institut de Physique Theorique, France),
Geoffrey Grimmett (Univ. of Cambridge, UK),
Demeter Kiss (Univ. of Cambridge, UK),
Michael Kozdron (Univ. of Regina, Canada),
Kalle Kytölä (Univ. of Helsinki, Finland),
Gregory F. Lawler (University of Chicago, USA),
Seung-Yeop Lee (University of South Florida, USA),
Pierre Nolin (ETH Zürich, Switzerland),
Vladas Sidoravicius (IMPA, Brazil),
Alexander Vasiliev (University of Bergen, Norway),
Fredrik Viklund (Uppsala University/KTH, Sweden),
Bálint Virág (Univ. of Toronto, Canada),
Hao Wu (MIT, USA).