Aaronson, S. (2014, February 6). TIME?s cover story on D-Wave: A case study in the conventions of modern journalism. Retrieved July 2015, from

Acin, A., Jané, E., & Vidal, G. (2001). Optimal estimation of quantum dynamics. Physical Review A, 64(5), 050302.

Ahnert, S. (2006, January 1). Topics in Quantum Information Theory. Retrieved March 15, 2015, from

Aïmeur, E., Brassard, G., & Gambs, S. (2013). Quantum speed-up for unsupervised learning. Machine Learning, 90(2), 261-287.

Aïmeur, E., Brassard, G., & Gambs, S. (2006). Machine learning in a quantum world. In Advances in Artificial Intelligence (pp. 431-442). Springer Berlin Heidelberg.

Albash, T., Vinci, W., Mishra, A., Warburton, P. A., & Lidar, D. A. (2015). Consistency tests of classical and quantum models for a quantum annealer. Physical Review A, 91(4), 042314.

Altaisky, M. V., Zolnikova, N. N., Kaputkina, N. E., Krylov, V. A., Lozovik, Y. E., & Dattani, N. S. (2015). Towards a feasible implementation of quantum neural networks using quantum dots. arXiv preprint arXiv:1503.05125.

Anguita, D., Ridella, S., Rivieccio, F., & Zunino, R. (2003). Quantum optimization for training support vector machines. Neural Networks, 16(5), 763-770.

Bardeen, J., Cooper, L. N., & Schrieffer, J. R. (1957). Theory of superconductivity. Physical Review, 108(5), 1175.

Barry, J., Barry, D. T., & Aaronson, S. (2014). Quantum POMDPs. arXiv preprint arXiv:1406.2858.

Bisio, A., Chiribella, G., D’Ariano, G. M., Facchini, S., & Perinotti, P. (2010). Optimal quantum learning of a unitary transformation. Physical Review A, 81(3), 032324.

Blais, A., Huang, R. S., Wallraff, A., Girvin, S. M., & Schoelkopf, R. J. (2004). Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Physical Review A, 69(6), 062320.

Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N., & Lidar, D. A. (2013). Experimental signature of programmable quantum annealing. Nature communications, 4.

Boixo, S., Rnnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., ... & Troyer, M. (2014). Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 10(3), 218-224.

Bouchiat, V., Vion, D., Joyez, P., Esteve, D., & Devoret, M. H. (1998). Quantum coherence with a single Cooper pair. Physica Scripta, 1998(T76), 165.

Cassandra, A. (2009, June 26). The POMDP Page. Retrieved May 15, 2015, from

Cayton, L. (2005). Algorithms for manifold learning. Univ. of California at San Diego Tech. Rep, 1-17.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2014). The Loss Surface of Multilayer Networks. arXiv preprint arXiv:1412.0233.

Cohen, E., & Tamir, B. (2014). D-Wave and predecessors: From simulated to quantum annealing. International Journal of Quantum Information, 12(03), 1430002.

Daoyi Dong; Chunlin Chen; Hanxiong Li; Tarn, T., "Quantum Reinforcement Learning," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on , vol.38, no.5, pp.1207,1220, Oct. 2008

Denchev, V. S., Ding, N., Vishwanathan, S. V. N., & Neven, H. (2012). Robust classification with adiabatic quantum optimization. arXiv preprint arXiv:1205.1148.

DiVincenzo, D. P. (2000). The physical implementation of quantum computation. arXiv preprint quant-ph/0002077.

Epstein, C. (2012). Adiabatic quantum computing: An overview. Quantum Complexity Theory, 6, 845.

Faber, J., & Giraldi, G. A. (2002). Quantum models for artificial neural networks.

Globus, A., Bailey, D., Han, J., Jaffe, R., Levit, C., Merkle, R., & Srivastava, D. (1998). Nasa applications of molecular nanotechnology. Journal of the British Interplanetary Society, 51, 145-152.

Harneit, W. (2002). Fullerene-based electron-spin quantum computer. Physical Review A, 65(3), 032322.

Hen, I., Job, J., Albash, T., R?nnow, T. F., Troyer, M., & Lidar, D. (2015). Probing for quantum speedup in spin glass problems with planted solutions. arXiv preprint arXiv:1502.01663.

Imamog, A., Awschalom, D. D., Burkard, G., DiVincenzo, D. P., Loss, D., Sherwin, M., & Small, A. (1999). Quantum information processing using quantum dot spins and cavity QED. Physical Review Letters, 83(20), 4204.

Introduction to the D-Wave Quantum Hardware. (2014). Retrieved July 2015, from D-Wave Systems Breaks 1000 Qubit Quantum Computing Barrier. (2015, June 20). Retrieved July 2015, from

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., ... & Rose, G. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194-198.

Jones, J. A., & Mosca, M. (1998). Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer. The Journal of chemical physics, 109(5), 1648-1653.
Kane, B. E. (1998). A silicon-based nuclear spin quantum computer. Nature, 393(6681), 133-137. Platzman, P. M., & Dykman, M. I. (1999). Quantum computing with electrons floating on liquid helium. Science, 284(5422), 1967-1969.

Kielpinski, D., Monroe, C., & Wineland, D. J. (2002). Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890), 709-711.

Knill, E., Laflamme, R., & Milburn, G. J. (2001). A scheme for efficient quantum computation with linear optics. nature, 409(6816), 46-52.

Lanting, T., Przybysz, A. J., Smirnov, A. Y., Spedalieri, F. M., Amin, M. H., Berkley, A. J., ... & Rose, G. (2014). Entanglement in a quantum annealing processor. Physical Review X, 4(2), 021041.

Leuenberger, M. N., & Loss, D. (2001). Quantum computing in molecular magnets. Nature, 410(6830), 789-793.

Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411.

Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631-633.

Mehta, P., & Schwab, D. J. (2014). An exact mapping between the Variational Renormalization Group and Deep Learning. arXiv preprint arXiv:1410.3831.

McGeoch, C. C., & Wang, C. (2013, May). Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers (p. 23). ACM.

Mirani, L., & Lichfield, G. (2014, April 15). Why nobody can tell whether the world?s biggest quantum computer is a quantum computer. Retrieved July 20, 2015, from

Neven, H., Denchev, V. S., Rose, G., & Macready, W. G. (2009). Training a large scale classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0912.0779.

Neven, H., Denchev, V. S., Drew-Brook, M., Zhang, J., Macready, W. G., & Rose, G. (2009). NIPS 2009 demonstration: Binary classification using hardware implementation of quantum annealing. Quantum, 1-17.

Neven, H., Denchev, V. S., Rose, G., & Macready, W. G. (2008). Training a binary classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0811.0416.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation & Quantum Information Systems. Cambridge university press.

O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A., & Smelyanskiy, V. (2015). Bayesian network structure learning using quantum annealing. The European Physical Journal Special Topics, 224(1), 163-188.

Oskin, M., Chong, F. T., Chuang, I. L., & Kubiatowicz, J. (2003, June). Building quantum wires: the long and the short of it. In Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on (pp. 374-385). IEEE.

Paul, A., & Venkatasubramanian, S. (2014). Why does Deep Learning work?-A perspective from Group Theory. arXiv preprint arXiv:1412.6621.

Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A., & Briegel, H. J. (2014). Quantum speedup for active learning agents. Physical Review X, 4(3), 031002.

Pudenz, K. L., Albash, T., & Lidar, D. A. (2014). Error-corrected quantum annealing with hundreds of qubits. Nature communications, 5.

Pudenz, K. L., & Lidar, D. A. (2013). Quantum adiabatic machine learning. Quantum information processing, 12(5), 2027-2070.

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical review letters, 113(13), 130503.

Rigetti, C. T. (2009). Quantum gates for superconducting qubits

Russell, S., Norvig, P. (1995). Artificial Intelligence: A modern approach. Prentice-Hall, Egnlewood Cliffs, 25.

Serway, R., Moses, C., & Moyer, C. (2004). Chapter 12 Superconductivity in "Modern physics". Cengage Learning. Retrieved from

Shin, S. W., Smith, G., Smolin, J. A., & Vazirani, U. (2014). How" Quantum" is the D-Wave Machine?. arXiv preprint arXiv:1401.7087.

Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). An introduction to quantum machine learning. Contemporary Physics, (ahead-of-print), 1-14.

Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). The quest for a quantum neural network. Quantum Information Processing, 13(11), 2567-2586.

Smolin, J. A., & Smith, G. (2013). Classical signature of quantum annealing. arXiv preprint arXiv:1305.4904.

Trugenberger, C. A. (2001). Probabilistic quantum memories. Physical Review Letters, 87(6), 067901.

Prentice-Hall, Egnlewood Cliffs, . Tarrataca, L., & Wichert, A. (2013). Intricacies of quantum computational paths. Quantum information processing,&nbsp12(2), 1365-1378.

Tarrataca, L., & Wichert, A. (2011). Tree search and quantum computation. Quantum Information Processing. 10(4), 475-500.

Vazirani, U. (2013, August 11). Quantum Mechanics and Quantum Computation. Retrieved March 15, 2015, from

Ventura, D., & Martinez, T. (2000). Quantum associative memory. Information Sciences, 124(1), 273-296.

Wiebe, N., Kapoor, A., & Svore, K. (2014). Quantum nearest-neighbor algorithms for machine learning. arXiv preprint arXiv:1401.2142.

Wiebe, N., Kapoor, A., & Svore, K. M. (2014). Quantum Deep Learning. arXiv preprint arXiv:1412.3489.

Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to Data Mining (First edition.). San Diego, CA: Academic Press.

Ying, M. (2010). Quantum computation, quantum theory and AI. Artificial Intelligence, 174(2), 162-176.

Zwiebach, B. (2015, January 10). Mastering Quantum Mechanics. Retrieved March 17, 2015, from