Harvard University
1 Oxford Street
Cambridge, MA 02138

Email: qianlin "at" cmsa.fas.harvard.edu

 I am a postdoc @Jun S. Liu's Lab at Harvard University.
 I received my Ph.D. in mathematics from MIT in 2010

Research Interests
  • Sufficient Dimension Reduction



       Sliced Inverse Regression and Related:
  1. Qian Lin,  Z. Zhao and J. S. Liu.     On Consistency and Sparsity of Sliced Inverse Regression in High Dimensions,    Annals of Statistics (accepted)   arXiv:1507.03895                                                                                                                                             
  2. Matey Neykov, Q. Lin and J. S. Liu.     Signed Support Recovery for Single Index Models  in High Dimensions,    Annals of Mathematical Sciences and Applications Vol. 1 No. 2 (2016) 379-426   arXiv:1511.02270
  3. Qian Lin, Y. Li and J. S. Liu.     Inverse Modeling: A strategy to cope with nonlinearity,  Handbook of Big Data Analytics. Springer ; In Press, 2016.   (Book Chapter)                                                                                                                   
           Submitted Manuscripts
  1. Qian Lin, X. Li, D. Huang and J. S. Liu.     On Optimality  of Sliced Inverse Regression in High Dimensions,   arxiv:1701.06009 (submitted)                                                                                                                                                                           
  2. Qian Lin, Z. Zhao and J. S. Liu.     Sparse Sliced Inverse Regression for High Dimensional Data,   arxiv:1611.06655 (submitted)   

          Working Papers

  1. Qian Lin, Z. Zhao, Z. Zhu and J. S. Liu.     Detection Boundary of Sparse Single Index Models,   (In preparation)
  2. Qian Lin, Z. Zhu and J. S. Liu.     On the Sliced Stability in Sliced Inverse Regression. (In preparation) 
  3. Qian Lin, Z. Zhu and J. S. Liu.      On Model Selection Consistency of Lasso-SIR,   (In preparation)

      Others :

  1. Xinran Li, P. Ding , Q. Lin, D. Yang and J. S. Liu.     Randomization-based inference for peer effects,    (Submitted)

  1. Qian Lin and M. Wang.     Isogeny orbits in a family of abelian varieties,   Acta Arithmetica 170(2015), 161-173    arxiv:1403.3976                                                                                                                                                                                                        
  2. Roman Bezrukavnikov and Q. Lin.     Highest weight modules at the critical level and noncommutative Springer resolution, Algebraic Groups and Quantum Groups, Contemp. Math 565 (2012): 15-27    arxiv:1108.1906                                                                                          
  3. Qian Lin, Z. Liu and Y. Sheng.     Quadratic Deformations of Lie-Poisson Structures, Letters in Mathematical Physics 83.3 (2008): 217-2    arxiv:0707.2867                                                                                                                       
My Talk Slides:
  1. Semi-parametric regression for high dimensional data  SIR.pdf