Publications


Publish or perish! 

If you are interested in reprints, please contact Prof. Disney - mddisney#buffalo.edu. 


  • 1. Testa SM, Disney MD, Turner DH, and Kierzek R. Thermodynamics of RNA-RNA duplexes with 2- or-thiouridines: Implications for antisense design and targeting a group I intron. Biochemistry, (1999),

    38, 16655-16662.


    2. Disney MD, Testa SM, and Turner DH. Targeting a Pneumocystis carinii group I intron with

    methylphosphonate oligonucleotides: Backbone charge is not required for binding or reactivity.

    Biochemistry, (2000), 39, 6991-7000.


    3. Disney MD, Gryaznov SM, and Turner DH. Contributions of individual nucleotides to tertiary binding of

    substrate by a Pneumocystis carinii group I intron. Biochemistry, (2000), 39, 14269-14278.


    4. Disney MD, Haidaris CG, and Turner DH. Recognition elements for 5' exon substrate binding to the

    Candida albicans group I intron. Biochemistry, (2001), 40, 6507-6519.


    5. Disney MD, Matray T, Gryaznov SM, and Turner DH. Binding enhancement by tertiary interactions

    and suicide inhibition of a Candida albicans group I intron by phosphoramidate and 2' O-methyl

    hexanucleotides. Biochemistry, (2001), 40, 6520-6526.


    6. Disney MD and Turner DH. Molecular recognition by the Candida albicans group I intron: tertiary

    interactions with an imino G●A pair facilitate binding of the 5' exon and lower the KM for guanosine.

    Biochemistry, (2002), 41, 8113-8119.


    7. Childs JL, Disney MD, and Turner DH. Oligonucleotide directed misfolding of RNA inhibits Candida

    albicans group I intron splicing. Proceedings of the National Academy of Sciences USA, (2002), 99,

    11091-11096.


    8. Disney MD, Haidaris, CG, and Turner DH. Uptake and antifungal activity of oligonucleotides in

    Candida albicans. Proceedings of the National Academy of Sciences USA, (2003), 100, 1530-1534.


    9. Du H, Disney MD, Miller BL, and Krauss TD. Hybridization-based unquenching of DNA hairpins on Au

    surfaces: Prototypical “molecular beacon” biosensors. Journal of the American Chemical Society,

    (2003), 125, 4012-4013.


    10. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zucker M, and Turner DH. Incorporating chemical

    modification restraints into a dynamic programming algorithm for prediction of RNA secondary

    structure. Proceedings of the National Academy of Sciences USA, (2004), 101, 7287-7292.


    11. Disney MD, Childs JL, and Turner DH. New approaches to targeting RNA with oligonucleotides:

    Inhibition of group I intron self-splicing. Biopolymers, (2004), 73, 151-161.


    12. Disney MD, Magnet S, Blanchard JS, and Seeberger PH. Aminoglycoside microarrays to study

    antibiotic resistance. Angewandte Chemie International Edition, (2004), 43, 1591-1594.


    13. Disney MD and Seeberger PH. Aminoglycoside microarrays to explore interactions of antibiotics with

    RNAs and proteins. Chemistry-A European Journal, (2004), 10, 3308-3314.


    14. Disney MD and Seeberger PH. Carbohydrate arrays as tools for the glycomics revolution. Drug

    Discovery Today: TARGETS, (2004), 3, 151-158.


    15. Disney MD, Zheng J, Swager T, and Seeberger PH. Detection of bacteria with carbohydratefunctionalized

    fluorescent polymers. Journal of the American Chemical Society, (2004), 126, 13343-

    13346.


    16. Ratner DM, Adams EW, Disney MD, and Seeberger PH. Tools for glycomics: mapping interactions of

    carbohydrates in biological systems. ChemBioChem, (2004), 5, 1375-1383.


    17. Disney MD, Childs JL, and Turner DH. Hoechst 33258 inhibits group I intron self-splicing by affecting

    RNA folding. ChemBioChem, (2004), 5, 1647-1652.


    18. Disney MD and Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell

    interactions and to detect pathogens. Chemistry and Biology, (2004), 11, 1701-1707.


    19. Disney MD, Stephenson R, Wright TW, Haidaris CG, Turner DH, and Gigliotti F. Activity of Hoechst

    33258 against Pneumocystis carinii, f. sp. muris, Candida albicans, and Candida dubliniensis.

    Antimicrobial Agents Chemotherapy, (2005), 49, 1326-1330.


    20. Disney MD, Hook D, Namoto K, Seeberger PH, and Seebach D. N-linked glycosylated beta-peptides

    are resistant to degradation by glycoamidase A. Chemistry and Biodiversity, (2005), 2, 1624-1634.


    21. Brun MA, Disney MD, and Seeberger PH. Miniaturization of microwave-assisted carbohydrate

    functionalization to create oligosaccharide microarrays. ChemBioChem, (2006), 7, 421-424.


    22. Kehr JC, Zilliges Y, Springer A, Disney MD, Ratner DD, Bouchier C, Seeberger PH, de Marsac NT,

    and Dittmann E. A mannan binding lectin is involved in cell-cell attachment in a toxic strain of

    Microcystis aeruginosa. Molecular Microbiology, (2006), 59, 893-906.


    23. Barrett OJ, Childs JL, and Disney MD. Chemical microarrays to identify ligands that bind pathogenic

    cells. ChemBioChem, (2006), 7, 1882-1885.


    24. Disney MD and Childs-Disney JL. Using selection to identify and chemical microarray to study the

    RNA internal loops recognized by 6’-N-acylated kanamycin A. ChemBioChem, (2007), 8, 649-656.


    25. Childs-Disney JL, Wu M, Pushechnikov A, Aminova O, and Disney MD. A small molecule microarray

    platform to select RNA internal loop-ligand interactions. ACS Chemical Biology (2007), 2, 745‐754.


    26. Disney MD and Barrett OJ. An aminoglycoside microarray platform for directly monitoring and studying

    resistance. Biochemistry (2007), 46, 11223-11230.


    27. Childs-Disney JL and Disney MD. A simple ligation-based method to increase the information density

    in sequencing experiments used to deconvolute nucleic acid selections. RNA, (2008), 14, 390‐394.


    28. Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, and

    Childs-Disney JL. Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA

    internal loop partners. Journal of the American Chemical Society, (2008), 130, 11185‐11194.


    29. Barrett OJ, Pushechnikov A, Wu M, and Disney MD. Studying aminoglycoside modification by the

    acetyltransferase class of resistance-causing enzymes via microarray. Carbohydrate Research, (2008),

    343, 2924-2931


    30. Aminova O, Paul DJ, Childs-Disney JL, and Disney MD. Two-dimensional combinatorial screening

    identifies specific 6’acylated kanamycin A- and 6’ acylated neamine-RNA hairpin interactions.

    Biochemistry, (2008), 47, 12670-12679.


    31. Labuda LP, Pushechnikov A, and Disney MD. Small molecule microarrays of RNA-focused peptoids

    help identify inhibitors of a pathogenic group I intron. ACS Chemical Biology, (2009), 4, 299-307.


    32. Lee MM, Pushechnikov A, and Disney MD. Rational and modular design of potent ligands targeting

    the RNA that causes myotonic muscular dystrophy 2. ACS Chemical Biology, (2009), 4, 345-355.


    33. Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French, JM, Thornton CA, and Disney MD.

    Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease:

    Application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. Journal of the

    American Chemical Society, (2009), 131, 9767-9779.


    34. Paul DJ, Seedhouse SJ, and Disney MD. Two-dimensional combinatorial screening and the RNA

    Privileged Space Predictor (RNA-PSP) efficiently identify aminoglycoside-RNA hairpin loop interactions.

    Nucleic Acids Research, (2009), 37: 5894-5907.


    35. Lee MM, Childs-Disney JL, Pushechnikov A, French JM, Sobczak K, Thornton CA, and Disney MD.

    Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing:

    targeting the RNAs that cause myotonic muscular dystrophy. Journal of the American Chemical

    Society (2009), 131: 17464-17472.


    36. Disney MD, Lee MM, Pushechnikov A, and Childs-Disney JL. The Role of Flexibility in the Rational

    Design of Modularly Assembled Ligands Targeting the RNAs that Cause the Myotonic Dystrophies.

    ChemBioChem (2010), in press. (DOI: 10.1002/cbic.200900716)


    37. Seedhouse SJ, Labuda LP, and Disney MD. The Privileged Chemical Space Predictor (PCSP): A

    Computer Program that Identifies Privileged Chemical Space from Screens of Modularly Assembled

    Chemical Libraries. Bioorganic & Medicinal Chemistry Letters (2010), in press. (DOI:

    10.1016/j.bmcl.2010.01.017)


    38. Tran T and Disney MD. Two-Dimensional Combinatorial Screening (2DCS) of a Bacterial rRNA A-sitelike

    Motif Library: Defining Privileged Asymmetric Internal Loops that Bind Aminoglycosides.

    Biochemistry (2010), in press. (DOI: 10.1021/bi901998m)


    39. Velagapudi SP, Seedhouse, SJ, and Disney MD. Structure-Activity Relationships Through Sequencing

    (StARTS) Defines Optimal and Suboptimal RNA Motif Targets for Small Molecules, Angewandte

    Chemie (2010), in press.