Recta de regresión

La regresión es una técnica estadística utilizada para simular la relación existente entre dos o más variables. Por lo tanto se puede emplear para construir un modelo que permita predecir el comportamiento de una variable dada.
La regresión es muy utilizada para interpretar situaciones reales, pero comúnmente se hace de mala forma, por lo cual es necesario realizar una selección adecuada de las variables que van a construir las ecuaciones de la regresión, ya que tomar variables que no tengan relación en la práctica, nos arrojará un modelo carente de sentido, es decir ilógico.

Según sea la dispersión de los datos (nube de puntos) en el plano cartesiano, pueden darse alguna de las siguientes relaciones, Lineal, Logarítmica, Exponencial, Cuadrática, entre otras. Las ecuaciones de cada relación se presentan en la siguiente tabla.

Tabla 1. Ecuaciones de regresión

REGRESIÓN

ECUACIÓN

Lineal

y = A + Bx

Logarítmica

y = A + BLn(x)

Exponencial

y = Ae(Bx)

Cuadrática

y = A + Bx +Cx2

 



Sin embargo obtener el modelo de regresión no es suficiente para establecer la regresión, ya que es necesario evaluar que tan adecuado es el modelo de regresión obtenido. Para esto se hace uso del coeficiente de correlación R, el cual mide el grado de relación existente entre las variables. El valor de R varia entre -1 y 1, pero en la práctica se trabaja con el valor absoluto de R, entonces, a medida que R se aproxime a 1, más grande es el grado de correlación entre los datos, de acuerdo con esto el coeficiente de correlación se puede clasificar de varias formas, como se observa en la Tabla 2.

Tabla 2. Clasificación del grado de correlación.

CORRELACIÓN

VALOR O RANGO

Perfecta

|R| = 1

Excelente

0.9 <= |R| < 1

Buena

0.8 <= |R| < 0.9

Regular

0.5 <= |R| <0.8

Mala

|R|< 0.5

 

Por lo tanto el análisis de regresión es una herramienta estadística que permite analizar y predecir o estimar observaciones futuras de dos o más variables relacionadas entre sí, es decir una herramienta útil para la planeación.

Regresión Lineal


Correlación Lineal Y Recta De Regresión

Cuando observamos una nube de puntos podemos apreciar si los puntos se agrupan cerca de alguna curva. Aquí nos limitaremos a ver si los puntos se distribuyen alrededor de una recta. Si así ocurre diremos que hay correlación lineal. La recta se denomina recta de regresión.


Hablaremos de correlación lineal fuerte cuando la nube se parezca mucho a una recta y será cada vez más débil (o menos fuerte) cuando la nube vaya desparramándose con respecto a la recta. En el gráfico observamos que en nuestro ejemplo la correlación es bastante fuerte, ya que la recta que hemos dibujado está próxima a los puntos de la nube.

Cuando la recta es creciente la correlación es positiva o directa: al aumentar una variable, la otra tiene también tendencia a aumentar, como en el ejemplo anterior. Cuando la recta es decreciente la correlación es negativa o inversa: al aumentar una variable, la otra tiene tendencia a disminuir.

Ejemplo 2:
Una persona se entrena para obtener el carnet de conducir repitiendo un test de 50 preguntas. En la gráfica se describen el nº de errores que corresponden a los intentos realizados.
Observa que hay una correlación muy fuerte (los puntos están "casi" alineados) y negativa (la recta es decreciente).


Diagrama De Dispersión

La primera forma de describir una distribución bivariante es representar los pares de valores en el plano cartesiano. El gráfico obtenido recibe el nombre de nube de puntos o diagrama de dispersión.



Un diagrama de dispersión es una representación gráfica de la relación entre dos variables, muy utilizada en las fases de Comprobación de teorías e identificación de causas raíz y en el Diseño de soluciones y mantenimiento de los resultados obtenidos. Tres conceptos especialmente destacables son que el descubrimiento de las verdaderas relaciones de causa-efecto es la clave de la resolución eficaz de un problema, que las relaciones de causa-efecto casi siempre muestran variaciones, y que es más fácil ver la relación en un diagrama de dispersión que en una simple tabla de números

Regresión lineal simple

Fuentes de Consulta:

·        http://www.monografias.com/trabajos14/estadistica/estadistica.shtml

·        Youtube

Comments