Mínimo Múltiplo Comum  (mmc)


 

 

Mínimo Múltiplo Comum

(mmc)

 

  • MÚLTIPLO DE UM NÚMERO NATURAL

        Como 24 é divisível por 3 dizemos que 24 é múltiplo de 3.
        24 também é múltiplo de 1, 2, 3, 4, 6, 8, 12 e 24.

Se um número é divisível por outro, diferente de zero, então
dizemos que ele é múltiplo desse outro.

        Os múltiplos de um número são calculados multiplicando-se esse número pelos números naturais.

        Exemplo: os múltiplos de 7 são:
                            7x0 , 7x1, 7x2 , 7x3 , 7x4 , ...  =  0 , 7 , 14 , 21 , 28 , ...

        Observações importantes:
        1) Um número tem infinitos múltiplos
        2) Zero é múltiplo de qualquer número natural

 

  • MÍNIMO MÚLTIPLO COMUM (M.M.C.)

            Dois ou mais números sempre têm múltiplos comuns a eles.

            Vamos achar os múltiplos comuns de 4 e 6:
            Múltiplos de 60, 6, 12, 18, 24, 30,...
            Múltiplos de 40, 4, 8, 12, 16, 20, 24,...
            Múltiplos comuns de 4 e 60, 12, 24,...

            Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.

O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c.

 

  • CÁLCULO DO M.M.C.

            Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:

    1º) decompomos os números em factores primos
    2º) o m.m.c. é o produto dos factores primos comuns e não-comuns:

                   12   =  2  x  2  x  3
                   30   =          2  x  3   x  5
        m.m.c (12,30)  = 2  x  2  x  3   x  5

        Efectuando factorização dos números na forma de potência, temos:
        12 = 22  x  3
        30 = 2   x  3  x  5

        m.m.c (12,30)  = 22  x  3  x  5

O m.m.c. de dois ou mais números, quando factorizados, é o produto dos factores
comuns e não-comuns a eles, cada um elevado ao maior expoente.

   

  • PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA
            Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos factores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60)

            Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120

mmc1.jpg (4787 bytes)

 

  • PROPRIEDADE DO M.M.C.

         Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:

mmc2.jpg (2829 bytes)
m.m.c.(3,6,30) = 2 x 3 x 5 = 30

Dados dois ou mais números, se um deles é múltiplo de todos os outros, então
ele é o m.m.c. dos números dados.


         Considerando os números 4 e 15, ques são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:

mmc3.jpg (2579 bytes)
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60

Dados dois números primos entre si, o m.m.c. deles é o produto desses números.

<< Voltar para Adição e Subtracção números fraccionários