Daniele Ettore OTERA

daniele.otera(AT)gmail.com

daniele.otera(AT)mii.vu.lt


I am Senior Researcher at the Institute of Mathematics and Informatics of Vilnius University (Lithuania). My research fields are: Geometry, Topology and Algebra.

Here below you can find some information about me and my research.

  • My publications

    Short Vitae    (Short CV:   short-en - court-fr - breve-it - Full CV:  CV-en  -  CV-fr  -  CV-it )

    • Born in 1976 in Palermo, Italy.
    • July 1999: Mathematics Degree (Laurea), Università di Palermo, Italy.
    • June 2001: Master's Degree (D.E.A. - Diplôme d'Etudes Approfondies) in Mathematics, Université Paris-Sud 11, France.
    • February 2006: Ph.D. in Mathematics, Università di Palermo, Italy, and Universtité de Paris-Sud 11, France. Co-tutored PhD Thesis.
    • June 2006 - August 2009: Research associate (Assegnista di Ricerca), Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy.
    • 2006-2007: Visiting Research Fellow (7 months), Institut Fourier, Université de Grenoble, France.
    • 2007-2008: Post-doctoral Fellow (FNS), Institut de Mathématique, Université de Neuchâtel, Switzerland.
    • September 2009 - August 2011: Post-Doctoral Research Fellow (Marie Curie - Intra European Fellowship), Département de Mathématique, Université Paris-Sud 11, France.
    • June 2013 - August 2014: Researcher (Mokslo darbuotojas), Vilniaus Universiteto Matematikos ir Informatikos Institutas, Vilnius, Lithuania.
    • March 2014: supervisor of a 2-years research project of the Research Council of Lithuania.
    • 2014-2019: Senior Researcher (Vyresnysis mokslo darbuotojas), Vilniaus Universiteto Matematikos ir Informatikos Institutas, Vilnius, Lithuania.



    Research Fields

    • Geometric Group Theory: discrete groups, quasi-isometries, geometric properties of groups, asymptotic topology of groups, ends, lattices in Lie groups.
    • Low-dimensional Topology and Geometric Topology: open manifolds, topological tameness conditions, simple connectivity at infinity, geometric simple connectivity, quasi-simple filtration, Tucker property, proper homotopy invariants, (Poenaru's) inverse-representations.
    • Group Theory: finite groups, topological groups, (locally-)compact groups, probability in group theory, commutativity degrees, subgroup commutativity degree.




    Some links