Research

We have studied the activities of the masticatory muscles (the masseter, temporalis, lateral pterygoid, and medial pterygoid muscles) and other muscles associated with mastication (digastric and sternocleidomastoid musles, etc.) via the simultaneous recording of incisal point and condylar movements and examined the role of reflexes in the functional roles of these muscles (1-12).

We have also researched movement disorders such as oromandibular dystonia, dyskinesia, and bruxism, as well as diseases caused by abnormal muscle contracture of the masticatory muscles, such as masseteric hypertrophy, hyperplasia of the coronoid process, masticatory muscle tendon-aponeurosis hyperplasia, and temporomandibular joint disorders (13-29). Furthermore, we have electrophysiologically studied the movement and perception of the stomatognathic system using non-invasive brain function measurement techniques such as electroencephalography (movement-related cortical potentials, contingent negative variation, somatosensory evoked potentials), EMG (surface and needle EMG, evoked EMG), magnetoencephalography (MEG) (movement-related MEG, somatosensory evoked magnetic fields), and near-infrared spectroscopy (15,16,19,21-27). We are currently attempting to determine how the central nervous system regulates the movements of the mandible and tongue; chewing; and perception in the lips, tongue, gums, and palate, as well as the changes that occur during involuntary movements of the stomatognathic system, e.g., the changes in movement-related cortical potentials, which are indicative of activity in the supplementary motor area in the basal ganglia in preparation for exercise. The amplitudes of these potentials differ significantly between some of the movements. The amplitudes of potentials associated with lateral movements are identical and tend to be larger than those of potentials associated with mouth opening and closing. In addition, these signals tended to predominantly occur in the ipsilateral hemisphere during right- and left-sided movements whereas their hemispheric distribution was symmetrical during mouth opening and closing (15,16,19). These potentials exhibit decreased amplitudes in oromandibular dystonia (19,21). Also we have recorded somatosensory MEG responses using soft palate stimulation and observed the responses in the bilateral secondary sensory cortex (23) and perception in the tongue (27,29).

References

1. Yoshida K, Inoue H. EMG activity of the superior and inferior heads of the human lateral pterygoid muscles in internal deranged patients. Advanced Prosthodontics Worldwide, Proceedings of the World Congress on Prosthodontics, 258-259, 1991.

2. Yoshida K, Fukuda Y, et al. A method for inserting the EMG electrode into the superior head of the human lateral pterygoid muscle. Journal of Japan Prosthodontic Society, 36: 88-93, 1992.

3. Yoshida K. An electromyographic study on the superior head of the lateral pterygoid muscle during mastication from the standpoint of condylar movement. Journal of Japan Prosthodontic Society, 36: 110-120, 1992.

4. Yoshida K, Inoue H. An electromyographic study of the lateral pterygoid muscles during mastication in patients with internal derangement of TMJ. Journal of Japan Prosthodontic Society, 36: 1261-1272, 1992.

5. Yoshida K. Untersuchung zum Entlastungsreflex von Kaumuskeln während des Zerbeißens von Nahrung. Deutsche Zahnärztliche Zeitschrift, 48: 588-590, 1993.

6. Yoshida K. An electromyographic study on unloading reflex of the masticatory muscles. Journal of Japan Prosthodontic Society,37: 227-235, 1993.

7. Yoshida K. Elektromyographische Aktivität der Kaumuskeln während Kiefergelenkknacken.Schweizer Monatsschrift für Zahnmedizin, 105: 24-29, 1995.

8. Yoshida K. Elektromyographische Aktivität des M. pterygoideus lateralis bei Patienten mit Kiefergelenkknacken und Diskusverlagerung. Deutsche Zahnärztliche Zeitschrift, 50: 721-724, 1995.

9. Yoshida K. Kiefergelenkknacken und Diskusverlagerung aus der Sicht der Elektromyographie der Kaumuskeln. In: Siebert GK (ed): Atlas der Zahnärztlichen Funktionsdiagnostik, Carl Hanser, München, 44-50, 1996.

10. Yoshida K. Masticatory muscle responses associated with unloading of biting force during food crushing. Journal of Oral Rehabilitation, 25: 830-837, 1998.

11. Yoshida K. Koordination der Kaumuskeln während der Kaubewegung aus der Sicht der Kondylusbewegung bei Patienten mit Diskusdislokation. Deutsche Zahnärztliche Zeitschrift, 52: 816-820, 1998.

12. Yoshida K. Eigenschaften der Kaumuskelaktivität während verschiedenen Unterkieferbewegungen bei Patienten mit Diskusverlagerung ohne Reposition. Stomatologie, 96: 107-121, 1999.

13. Yoshida K, Kaji R, et al. Muscle afferent block for the treatment of oromandibular dystonia. Movement Disorders, 13: 699-705, 1998.

14. Yoshida K, Kaji R, et al. Muskelafferenzblockierung mittels lokaler Injektion von Lidocain bei Kaumuskelspasmus. Deutsche Zahnärztliche Zeitschrift, 53: 197-199, 1998.

15. Yoshida K, Kaji R, et al. Cortical potentials associated with voluntary mandibular movements. Journal of Dental Research, 79: 1514-1518, 2000.

16. Yoshida K, Kaji R, et al. Cortical distribution of Bereitschaftspotential and negative slope potential preceding mouth opening movements in human subjects. Archives of Oral Biology, 44: 183-190, 1999.

17. Yoshida K, Kaji R, et al. Muscle afferent block therapy for oromandibular dystonia. Japanese Journal of Oral and Maxillofacial Surgery, 46: 563-571, 2000.

18. Yoshida K, Kaji R, et al. Factors influencing the therapeutic effect of muscle afferent block for oromandibular dystonia: implications their distinct pathophysiology. International Journal of Oral and Maxillofacial Surgery, 31, 499-505, 2002.

19. Yoshida K, Kaji R, et al. Movement-related cortical potentials prior to jaw excursions in patients with oromandibular dystonia. Movement Disorders, 18, 94-100, 2003.

20. Yoshida K. Muskelafferentzblockierung in der Behandlung der oromandibulären Dystonie -Unterschiedliche Wirkung auf Kau- und Zungenmuskulatur-. Nervenarzt, 74: 516-522, 2003.

21. Yoshida K, Iizuka T. Jaw-deviation dystonia evaluated by movement-related cortical potentials and treated with muscle afferent block. Journal of Craniomandibular Practice, 21, 295-300, 2003.

22. Yoshida K. Temporomandibular joint disorders and sleep. Iizuka T, Inoue H (eds), Manual of Temporomandibular Joint Disorders. Nagasue, Kyoto, 186-193, 2004.

23. Yoshida K, Maezawa H, et al. Somatosensory evoked magnetic fields to air-puff stimulation on the soft palate. Neuroscience Research, 2006 55, 116-122, 2006.

24. Yoshida K, Iizuka T. Botulinum toxin treatment for upper airway collapse resulting from temporomandibular joint dislocation due to jaw-opening dystonia. Journal of Craniomandibular Practice, 24 217-222, 2006.

25. Yoshida K. Coronoidotomy as treatment for trismus due to jaw-closing oromandibular dystonia. Movement Disorders, 21, 1028-1031, 2006.

26. Miyawaki S, Yoshida K. Involuntary movements in the orofacial region. Cyclopedia of Mouth and Teeth. Asakura, Tokyo, 282-296, 2008.

27. Maezawa H, Yoshida K, et al. Somatosensory evoked magnetic fields following the tongue stimulation using needle electrodes. Neuroscience Research, 62, 131-139, 2008.

28. Maezawa H, Matsuhashi M, Yoshida K, et al. The magnetic artifacts derived from dental metals in magnetoencephalography. Japanese Journal of Cognitive Neuroscience, 11: 258-267, 2010.

29. Maezawa H, Yoshida K, et al. Evaluation of tongue sensory disturbance by somatosensory evoked magnetic fields following tongue stimulation. Neuroscience Research, 71, 244-250, 2011.

30. Maezawa H, Tojyo I, Yoshida K, et al. Recovery of impaired somatosensory evoked fields induced by tongue stimulation after improvement of tongue sensory deficits. Journal of Oral and Maxillofacial Surgery. 74, 1473-1482, 2016.

31. Yoshida K. Surgical intervention for oromandibular dystonia-related limited mouth opening: long-term follow-up. Journal of Cranio Maxillofacial Surgery. 45, 56-62, 2017.

32. Yoshida K. How do I inject botulinum toxin into the lateral and medial pterygoid muscles? Movement Disorders Clinical Practice 4, 285, 2017 doi:10.1002/mdc3.12460

33. Yoshida K. Clinical and phenomenological characteristics of patients with task-specific lingual dystonia: possible association with occupation. Frontiers in Neurology. 8, 649, 2017 doi:10.3389/fneur.2017.00649

34. Yoshida K. Sensory trick splint as a multimodal therapy for oromandibular dystonia. J Prosthodont Res. 62, 239-244, 2018 doi:10.1016/j.jpor.2017.09.004

35. Yoshida K. Computer-aided design/computer-assisted manufacture-derived needle guide for injection of botulinum toxin into the lateral pterygoid muscle in patients with oromandibular dystonia. Journal of Oral & Facial Pain and Headache. 32, e13-e21, 2018 doi: 10.11607/ofph.1955

36. Yoshida K. Multilingual website and cyberconsultations for oromandibular dystonia. Neurology International. 10, 7536, 2018 doi: 10.4081/ni.2018.7536

37. Yoshida K. Botulinum neurotoxin injection for the treatment of recurrent temporomandibular joint dislocation with and without neurogenic muscular hypertrophy. Toxins. 10, 174; doi: 10.3390/toxins10050174

38. Yoshida K. Oromandibular dystonia screening questionnaire for differential diagnosis. Clinical Oral Investigation. 23, 405–411, 2019. doi: 10.1007/s00784-018-2449-3

39. Yoshida K. Botulinum neurotoxin therapy for lingual dystonia using an individualized injection method based on clinical features. Toxins. 11, 51, 2019. doi: 10.3390/toxins11010051

40. Yoshida K. Development and validation of a disease-specific oromandibular dystonia rating scale (OMDRS). Frontiers in Neurology. 11, 583177, 2020. doi: 10.3389/fneur.2020.583177

41. Yoshida K. Sphenopalatine ganglion block with botulinum neurotoxin for treating trigeminal neuralgia using CAD/CAM-derived injection guide. Journal of Oral & Facial Pain Headache. 34, 135–140, 2020. doi: 10.11607/ofph.2510

42. Yoshida K. Clinical characteristics of functional movement disorders in the stomatognathic system. Frontiers in Neurology. 11: 23, 2020. doi: 0.3389/fneur.2020.00123

43. Yoshida K. Mouth opening retaining appliance after coronoidotomy for the treatment of trismus: effects on pain during postoperative training and maximal extent of mouth opening. Clinics in Surgery. 5, 2737, 2020.

44. Yoshida K. Prevalence and incidence of oromandibular dystonia: an oral and maxillofacial surgery service-based study. Clinical Oral Investigation. 25, 5755-5764, 2021. doi: 10.1007/s00784-021-03878-9

45. Yoshida K. Effects of botulinum toxin type A on pain among trigeminal neuralgia, myofascial temporomandibular disorders, and oromandibular dystonia. Toxins. 13, 605, 2021. doi: 10.3390/toxins13090605

46. Yoshida K. Behandlungsstrategien bei oromandibulärer Dystonie. Fortschritte der Neurologie Psychiatrie. 89, 562-572, 2021. doi: 10.1055/a-1375-0669

47. Yoshida K. Is botulinum toxin therapy effective for bruxism? Anti-Aging Medicine. 13: 394-398, 2017.

48. Yoshida K. Clinical Application of Botulinum Neurotoxin for Diseases in the Stomatognathic System. Journal of Japanese Dental Society of Anesthesiology. 48, 33‒40, 2020.doi: https://doi.org/10.24569/jjdsa.48.2_33

49.Yoshida K. Oromandibular dystonia. Clinical Neuroscience. 38, 1118-1121, 2020.

The publications listed above are representative of my studies on involuntary movements. I have listed other literature at ResearchGate. In addition, studies on sleep apnea syndrome have been compiled on the following website: Treatment and research of sleep apnea syndrome from clinical and neurophysiological aspects in the stomatognathic system.

Home