Numbers 140,000,000,000s

140,140,825,280

[Math.]  Two consecutive sums of consecutive square numbers:

140,140,825,280 = 328962+…+330242 = 330252+…+331522.

 

140,283,957,025   

[Math.]   Sum of the first 865 cube numbers:

13+…+8653 = 140,283,957,025 = (1+…+865)2 = 374,5452.  

 

140,933,418,921   

[Math.]  Sum of the first 866 cube numbers:

13+…+8663 = 140,933,418,921 = (1+…+866)2 = 375,4112.  

 

141,585,133,284   

[Math.]  Sum of the first 867 cube numbers:

13+…+8673 = 141,585,133,284 = (1+…+867)2 = 376,2782.  

 

142,239,105,316   

[Math.]   Sum of the first 868 cube numbers:

13+…+8683 =  142,239,105,316 = (1+…+868)2 = 377,1462.

 

142,857,142,857

[Math.]

1×7 + 3 = 10

14×7 + 2 = 100

142×7 + 6 = 1000

1428×7 + 4 = 10000

14285×7 + 5 = 100000

142857×7 + 1 = 1000000

 

1428571×7 + 3 = 10000000

14285714×7 + 2 = 100000000

142857142×7 + 6 = 1000000000

1428571428×7 + 4 = 10000000000

14285714285×7 + 5 = 100000000000

142857142857×7 + 1 = 1000000000000

 

1428571428571×7 + 3 = 10000000000000

 

 

142,895,340,225   

[Math.]  Sum of the first 869 cube numbers:

13+…+8693 =  142,895,340,225 = (1+…+869)2 = 378,0152.

 

143,553,843,225   

[Math.]  Sum of the first 870 cube numbers:

13+…+8703 = 143,553,843,225 = (1+…+870)2 = 378,8852.  

 

144,214,619,536   

[Math.]   Sum of the first 871 cube numbers:

13+…+8713 = 144,214,619,536 = (1+…+871)2 = 379,7562.  

 

144,877,674,384 

[Math.]  Sum of the first 872 cube numbers:

13+…+8723 = 144,877,674,384 = (1+…+872)2 = 380,6282.  

 

145,543,013,001   

[Math.]  Sum of the first 873 cube numbers:

13+…+8733 = 145,543,013,001 = (1+…+873)2 = 381,5012.  

 

145,679,366,105

[Math.]   Two consecutive sums of consecutive square numbers:

145,679,366,105 = 334112+…+335402 = 335412+…+336692.

 

145,926,144,000   

[Math.]  The order of the 12th sporadic group: Rudvalis group Ru.

 

146,210,640,625   

[Math.]  Sum of the first 874 cube numbers:

13+…+8743 = 146,210,640,625 = (1+…+874)2 = 382,3752.  

 

146,880,562,500   

[Math.]  Sum of the first 875 cube numbers:

13+…+8753 = 146,880,562,500 = (1+…+875)2 = 383,2502.  

 

147,197,952,744   

[Math.]  e^(p´671/2) = 147,197,952,743.999998662454… is a transcendental number (i.e., not a root of any polynomial equation with integer coefficients) very close to the integer 147,197,952,744.

 

147,552,783,876   

[Math.]  Sum of the first 876 cube numbers:

13+…+8763 = 147,552,783,876 = (1+…+876)2 = 384,1262.  

 

148,227,310,009   

[Math.]  Sum of the first 877 cube numbers:

13+…+8773 = 148,227,310,009 = (1+…+877)2 = 385,0032.  

 

148,904,146,161   

 [Math.]  Sum of the first 878 cube numbers:

13+…+8783 = 148,904,146,161 = (1+…+878)2 = 385,8812.  

 

149,583,297,600   

[Math.]  Sum of the first 879 cube numbers:

13+…+8793 = 149,583,297,600 = (1+…+879)2 = 386,7602 

 

xyz,wvu,abc,def (up to 142,856,abc,def)

[Math.]  For any xyz,wvu = 100,000 to 142,856, there are always six 6-digit numbers abc,edf such that xyz,wvu +abc,def is equal to one of 6 digit-rotations of 142,857 and the number xyz,wvu,abc,def is a multiple of 142,857.