Numbers 95,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  90K  -  91K  -  92K  -  93K  -  94K  -  95K  -  96K  -  97K  -  98K  -  99K

[1000s] & [10K…) * [20K…) * [30K…) * [40K…) * [50K…) * [60K…) * [70K…) * [80K…) * [90K…) & [100K]

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

95,040

[Math.]  The order of the 2nd sporadic group: Mathieu group M12.

 

[Math.]  Sum (in degrees) of all internal angles of a 530-side polygon.

 

95,121

[Math.]  951212 = 9,048,004,641 = (90480+04641)2.

 

95,154

[Math.]  951542 = 9,054,283,716, a square number using each of 10 digits 0-9 once. (The 82nd of 87 such numbers).

 

95,238

[Math.]  The 6-digit period of the rational number 2/21 = 0.095238095238… or 0.095238. Multiples of 047619 (= 095238/2) by 2, 5, 8, 11, 17 and 20 yield all 6 rotations of the digits of 095238: 095238, 238095, 380952, 523809, 809523 and 952380, respectively.

 

95,238

[Math.]  A 4-pseudoparasite-double number: 095,238×4 = 380,952.

 

95,317

[Math.]  A prime number of all 5 different odd digits.

 

95,731

[Math.]  The largest prime number of all 5 different odd digits.

 

95,742

[Math.]  Each ratio 97524/10836 = 95823/10647 = 95742/10638 = 9 uses each of 10 digits 0-9 once.

 

95,800

[Math.]   4424814 = 4145604+2175194+958004. The smallest counter-example to disprove Euler’s conjecture that it always requires at least n terms (of nth power) to sum to an nth power, nontrivially. (Fermat’s Last Theorem is a special case for only 2 terms).

 

95,823

[Math.]  Each ratio 97524/10836 = 95823/10647 = 95742/10638 = 9 uses each of 10 digits 0-9 once.

 

95nnn

[Zip]  U.S. Postal Zip Codes of California: 90nnn-95nnn, 960nn and 961nn.