Numbers 840,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  800K  -  810K  -  820K  -  830K  -  840K  -  850K  -  860K  -  870K  -  880K  -  890K

[10K][100K…) * [200K…) * [300K…) * [400K…) * [500K…) * [600K…) * [700K…) * [800K…) * [900K…) &  1M

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

842,724

[Math.]  842,724 = (842+72+4)2 = 9182.

 

843,885

[Math.]  Two consecutive sums of consecutive numbers:

8836+…+8930 = 8931+…+9024 = 843,885.

 

846,153

Math.]  The 6-digit period of the rational number 1/13 = 0.076923076923… or 0.076923. Its multiple by 13 is 999,999.  Then,   076,923×n = abc,def,ghi,jkl and

abc,def+ghi,jkl = 076,923, if n  = 13t+1

abc,def+ghi,jkl = 692,307, if n  = 13t+9

abc,def+ghi,jkl = 230,769, if n  = 13t+3

abc,def+ghi,jkl = 769,230, if n  = 13t+10

abc,def+ghi,jkl = 307,692, if n  = 13t+4

abc,def+ghi,jkl = 923,076, if n  = 13t+12

 for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923.

            And 076,923×n = abc,def,ghi,jkl &

abc,def+ghi,jkl = 153,846, if n  = 13t+2

abc,def+ghi,jkl = 538,461, if n  = 13t+7

abc,def+ghi,jkl = 384,615, if n  = 13t+5

abc,def+ghi,jkl = 615,384, if n  = 13t+8

abc,def+ghi,jkl = 461,538, if n  = 13t+6

abc,def+ghi,jkl = 846,153, if n  = 13t+11

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923×2 = 153,846. It is the period of the rational number 2/13 = 0.153846153846… or 0.153846), and the sums of first and last 3-digit numbers are always 999.