Numbers 760,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

761,904

[Math.]  Multiples of 047619 (the period of the rational number 1/21 = 0.047619047619… or 0.047619) by 4, 10, 13, 16 and 19 yield 5 other digit-rotations of the number itself: 190476, 476190, 619047, 761904 and 904761, respectively.

763,876

[Math.]  763876 = (+7–6–3+876)2 = 8742.

764,321

[Math.]  A prime number.  Number 0,764,321 misses 3 digits 5, 8 and 9 in 10 digits 0-9:

0,764,321×5 = 3,821,605 misses 3 digits 7, 4 and 9 (modulo 9).

765,321

[Math.] Number 0,765,321 misses 3 digits 4, 8 and 9 in 10 digits 0-9:

0,765,321×2 = 1,530,642 misses 3 digits 8, 7 and 9 (modulo 9)

0,765,321×4 = 3,061,284 misses 3 digits 7, 5 and 9 (modulo 9).

765,421

[Math.]  Number 0,765,421 misses 3 digits 3, 8 and 9 in 10 digits 0-9:

0,765,421×2 = 1,530,842 misses 3 digits 6, 7 and 9 (modulo 9)

0,765,421×5 = 3,827,105 misses 3 digits 6, 4 and 9 (modulo 9)

765,431

[Math.]  Number 0,765,431 misses 3 digits 2, 8 and 9 in 10 digits 0-9:

0,765,431×2 = 1,530,862 misses 3 digits 4, 7 and 9 (modulo 9)

0,765,431×4 = 3,061,724 misses 3 digits 8, 5 and 9 (modulo 9).

765,432

[Math.]  Number 0,765,432 misses 3 digits 1, 8 and 9 in 10 digits 0-9:

0,765,432×2 = 1,530,864 misses 3 digits 2, 7 and 9 (modulo 9)

0,765,432×4 = 3,061,728 misses 3 digits 4, 5 and 9 (modulo 9)

0,765,432×5 = 3,827,160 misses 3 digits 5, 4 and 9 (modulo 9).

766,038

[Math.]  Two consecutive sums of consecutive numbers:

8281+…+8372 = 8373+…+8463 = 766,038.

769,230

Math.]  The 6-digit period of the rational number 1/13 = 0.076923076923… or 0.076923. Its multiple by 13 is 999,999.  Then,   076,923×n = abc,def,ghi,jkl and

 abc,def+ghi,jkl = 076,923, if n  = 13t+1 abc,def+ghi,jkl = 692,307, if n  = 13t+9 abc,def+ghi,jkl = 230,769, if n  = 13t+3 abc,def+ghi,jkl = 769,230, if n  = 13t+10 abc,def+ghi,jkl = 307,692, if n  = 13t+4 abc,def+ghi,jkl = 923,076, if n  = 13t+12

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923.

And 076,923×n = abc,def,ghi,jkl &

 abc,def+ghi,jkl = 153,846, if n  = 13t+2 abc,def+ghi,jkl = 538,461, if n  = 13t+7 abc,def+ghi,jkl = 384,615, if n  = 13t+5 abc,def+ghi,jkl = 615,384, if n  = 13t+8 abc,def+ghi,jkl = 461,538, if n  = 13t+6 abc,def+ghi,jkl = 846,153, if n  = 13t+11

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923×2 = 153,846. It is the period of the rational number 2/13 = 0.153846153846… or 0.153846), and the sums of first and last 3-digit numbers are always 999.