Numbers 530,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

530,881

[Math.]  A Carmichael number: 530,881 = 13×97×421.

531,441

[Math.]  531,441 = (5+31+44+1)3 = 813

531,441 = (5+3+14+4+1)4 = 274.

531,487

[Math.]  124,367,958 = 627×198354 = 9×26×531487.

533,170

[Math.]  :  217,930,248,900 = (217,930+248,900)2 = 466,8302 and 284,270,248,900 = (284270+248900)2 = 533,1702 and 466,380+533,170 = 1,000,000.

533,417 & 533,418

[Math.]  533,417 = 1!2+2!2+3!2+4!2+5!2+6!2.

533,418 = 0!2+1!2+2!2+3!2+4!2+5!2+6!2.

538,461

[Math.]  213,018,248,521 = (213,018+248,521)2 = 461,5392 and

289,940,248,521 = (289940+248521)2 = 538,4612 and 461,539+538,461 = 1,000,000.

[Math.]  The 6-digit period of the rational number 1/13 = 0.076923076923… or 0.076923. Its multiple by 13 is 999,999.  Then,   076,923×n = abc,def,ghi,jkl and

 abc,def+ghi,jkl = 076,923, if n  = 13t+1 abc,def+ghi,jkl = 692,307, if n  = 13t+9 abc,def+ghi,jkl = 230,769, if n  = 13t+3 abc,def+ghi,jkl = 769,230, if n  = 13t+10 abc,def+ghi,jkl = 307,692, if n  = 13t+4 abc,def+ghi,jkl = 923,076, if n  = 13t+12

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923.

And 076,923×n = abc,def,ghi,jkl &

 abc,def+ghi,jkl = 153,846, if n  = 13t+2 abc,def+ghi,jkl = 538,461, if n  = 13t+7 abc,def+ghi,jkl = 384,615, if n  = 13t+5 abc,def+ghi,jkl = 615,384, if n  = 13t+8 abc,def+ghi,jkl = 461,538, if n  = 13t+6 abc,def+ghi,jkl = 846,153, if n  = 13t+11

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923×2 = 153,846. It is the period of the rational number 2/13 = 0.153846153846… or 0.153846), and the sums of first and last 3-digit numbers are always 999.