Numbers 500,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

-  510K  -  520K  -  530K  -  540K  -  550K  -  560K  -  570K  -  580K  -  590K

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

500,000

[Game]  In the popular TV game show “Who Wants to be a Millionaire?”, a contestant has to answer correctly 15 questions to step up the fixed prizes in U.S.\$: 100, 200, 300, 500, 1000, to 2000, 4000, 8000, 16,000, 32,000, to 64,000, 125,000, 250,000, 500,000 and the maximum amount is at least \$1,000,000, with 3 lifelines: polling the audience, calling a friend and narrowing to “50:50” answers. The guaranteed middle prizes can be \$1000 or \$32,000.

[Game]  In the popular TV game show “Deal or No Deal”, a contestant has the choices of one of 26 suitcases of the prizes U.S. \$0.01, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500, 750, 1000, 5000, 10,000, 25,000, 50,000, 75,000, 100,000, 200,000, 300,000, 400,000, 500,000, 750,000 and the maximum amount is at least \$1,000,000 (in a typical show).

[Language]  Roman numerals: D-bar or (D) = 500,000 & D = 500.

[Math.]  166,666,500,000,333,333 = 1666663+5000003+3333333.

1,000,000,000,166,666,500,000,333,333 =

= (109)3+1666663+5000003+3333333 (Generalizable).

500,365

[Math.]  A pyramidal number (sum of all squares of integers from 1 to 114):

500365 = 12+22+…+1132+1142.

500,500

500,500

[Math.]  A triangular number (sum of all integers from 1 to 1000):

500500 = 1+2+…+999+1000.

[Math.]   (Sequence of numbers 55 and 50…050…0).

500,5002 = 250,500,250,000 = (250500+250000)2.

500,5003 = 125,375,375,125,000,000 = (125375+375125+000000)3.

500,5004 = 62,750,375,250,062,500,000,000 =

= (62750+375250+062500+000000)4

[Math.]  (Sequence of numbers 49…950…0 and 50…050…0).

249,500,250,000 = (249,500+250,000)2 = 499,5002 and

250,500,250,000 = (250,500+250,000)2 = 500,5002 and 499,500+500,500 = 1,000,000.

502,440

[Math.]  Two consecutive sums of consecutive numbers:

6241+…+6320 = 6321+…+6399 = 502,440.

503,056

[Math.]  A pair of amicable numbers (503056, 514736).

508,585

[Math.]  Two consecutive sums of consecutive square numbers:

2102+2112+…+2192+2202 = 508,585 = 2212+2222+…+2292+2302.

509,203

[Math.]  A prime number.  The smallest Riesel number, i.e., the positive odd number k, such that the number k×2n–1 is composite, for every integer n ³ 1. The numbers of the form 509,203+m×11,184,810 are also Riesel numbers.