Numbers 330,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  300K  -  310K  -  320K  -  330K  -  340K  -  350K  -  360K  -  370K  -  380K  -  390K

[10K][100K…) * [200K…) * [300K…) * [400K…) * [500K…) * [600K…) * [700K…) * [800K…) * [900K…) &  1M

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

330,000

[EECS]  330K(W) is one of standard numerical values for resistors (of tolerance class 5%).

 

331,999

[Math.]  Circular prime numbers: all 6 numbers 199933, 999331, 993319, 933199, 331999 and 319993 are prime.

 

333,332

[Math.]  Square of numbers of similar pattern xxy, where y = x–1.

* 1102 = 012,100 & 012+100 = 112 = 110+2.

* 3322 = 110,224 & 110+224 = 334 = 332+2.

Similarly, 3…322 = 1…102…24 & 1…10+2…24 = 3…34 = 3…32+2.

333,3322 =  111,110,222,224 & 111,110+222,224 = 333,334 = 333,332+2.

* 4432 = 196,249 & 196+249 = 445 = 443+2

* 6652 = 442,225 & 442+225 = 667 = 665+2.

Similarly, 6…652 = 4…422…25 & 4…42+2…25 = 6…67 = 6…65+2.

* 7762 = 602,176 & 602+176 = 778 = 776+2.

 

333,333

[Math.] 

333333,666667,000000 = 333,3333+666,6673+0000003 and

333333,666667,000001 = 333,3333+666,6673+0000013.

 

166,666,500,000,333,333 = 1666663+5000003+3333333.  (Generalizable)

 

1,000,000,000,166,666,500,000,333,333 = (109)3+1666663+5000003+3333333.

 

[Math.]

3×37 = 111

33×3367 = 111,111

333×333,667 = 111,111,111

3333×33336667 = 111,111,111,111

33333×3333366667 = 111,111,111,111,111

333333×333333666667 = 111,111,111,111,111,111

...

 

333,333, 333,334, 333,335, 333,33, 333,337, 333,347 & 333,357

[Math.]   

33×34 = 1122

33×35 = 1155

33×36 = 1188

33×37 = 1221

33×47 = 1551

33×57 = 1881

...  

333,333×333,334 = 111,111,222,222

333,333×333,337 = 111,112,222,221

333,333×333,335 = 111,111,555,555

333,333×333,347 = 111,115,555,551

333,333×333,336 = 111,111,888,888

333,333×333,357 = 111,118,888,881

… (generalizable pattern) …

 

333,334

[Math.]   333,334,666,668 = 666,6682–333,3342 = (333334+666668)×333,334, where 666668 = 333334×2.

 

333,334,000,000,666,667 = 3333343+0000003+6666673 and

333,334,001,000,666,667 = 3333343+0010003+6666673.  (Generalizable)

 

[Math.]  Repeatedly inserting numbers 15 in the middle of the square number 16 yields other squares 1156 = 342, 111556 = 3342, 11115556 = 33342, 1111155556 = 333342

 

333,335

[Math.]  Repeatedly inserting numbers 12 between the digits 1 and 2 in the square number 1225 = 352 yields other squares 112225 = 3352, 11122225 = 33352, 1111222225 = 333352

 

333,667

[Math.]

3×37 = 111

33×3367 = 111,111

333×333,667 = 111,111,111

3333×33336667 = 111,111,111,111

33333×3333366667 = 111,111,111,111,111

333333×333333666667 = 111,111,111,111,111,111

...

 

[Math.]

372 = 1369 = 1368+1

33672 = 11336689 = 11336688+1

333,6672 = 111,333,666,889 = 111,333,666,888+1

...

 

[Math.]

296×333,667 = 98,765,432

2,996×33,336,667 = 99,876,654,332

29,996×3,333,366,667 = 99,987,666,543,332

299,996×333,333,666,667 = 99,998,766,665,433,332

 

334,153

[Math.]  A Carmichael number: 334,153 = 19×43×409.

 

334,668

[Math.]  334,668 = 6682–3342 = (334+668)×334, where 668 = 334×2. (Generalizable)

 

335,685

[Math.]  Two consecutive sums of consecutive numbers:

4761+…+4830 = 4831+…+4899 = 335,685.

 

336,699

[Math.]

692 = 136,161

36992 = 13682601

369992 = 1368926001

3699992 = 136899260001

36999992 = 13689992600001

3366992 = 113366,216601

336699992 = 11336688,32660001

33669999992 = 1133668899,3266000001

3366999999992 = 113366889999,326600000001

333,666,9992 = 111,333,666,221,666,001

333,666,999,9992 = 111,333,666,888,332,666,000,001

333,666,999,999,9992 = 111,333,666,888,999,332,666,000,000,001

3333,6666,99992 = 1111,3333,6666,2221,6666,0001

3333,6666,9999,99992 = 1111,3333,6666,8888,3332,6666,0000,0001.

 

336,700 & 336,701

[Math.]  336,700 = 333+673+003.

336,701 = 333+673+013. (Generalizable)

 

337,500

[Math.]  337,500 = 22×33×55.

 

[Math.]  Sum (in degrees) of all internal angles of an 1877-side polygon.