Numbers 150,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  -  110K  -  120K  -  130K  -  140K  -  150K  -  160K   -  170K  -  180K  -  190K

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

150,000

[Biology]  The number of hairs on a human head is about 100,000 – 150,000.

[EECS]  150K(W) is one of standard numerical values for resistors (of tolerance class 5%).

151,263

[Math.]  151,263 = 75×32, involving the first 4 prime numbers.

152,100

[Math.]  35,010,152,100 = (35010+152,100)2 = 187,1102 and

660,790,152,100 = (660790+152100)2 = 812,8902 and 187110+812890 = 1,000,000.

[Math.]  Sum (in degrees) of all internal angles of an 847-side polygon.

152,344

[Math.]  152,344,237,969 = (152,344+237,969)2 = 390,3132 and

371,718,237,969 = (371,718+237,969)2 = 609,6872 and 390313+609687 = 1,000,000.

152,990

[Math.]  The 2nd known amicable/sociable number chain: 14316 → 19116 → 31704 → 47616 → 83328 → 177792 → 295488 → 629072 → 589786 → 294896 → 358336 → 418904 → 366556 → 274924 → 275444 → 243760 → 376736 → 381028 → 285778 → 152990 → 122410 → 97946 → 48976 → 45946 → 22976 → 22744 → 19916 → 17716 → 14316. (of 28 links, currently the longest, found by Poulet, 1918)

153,117

[Math.]  Two consecutive sums of consecutive numbers: 2809+…+2862 = 2863+…+2915 = 153,117.

153,176

[Math.]  A pair of amicable numbers (141664, 153176).

153,846

[Math.]  The 6-digit period of the rational number 1/13 = 0.076923076923… or 0.076923. Its multiple by 13 is 999,999.  Then,   076,923×n = abc,def,ghi,jkl and

 abc,def+ghi,jkl = 076,923, if n  = 13t+1 abc,def+ghi,jkl = 692,307, if n  = 13t+9 abc,def+ghi,jkl = 230,769, if n  = 13t+3 abc,def+ghi,jkl = 769,230, if n  = 13t+10 abc,def+ghi,jkl = 307,692, if n  = 13t+4 abc,def+ghi,jkl = 923,076, if n  = 13t+12

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923.

And 076,923×n = abc,def,ghi,jkl &

 abc,def+ghi,jkl = 153,846, if n  = 13t+2 abc,def+ghi,jkl = 538,461, if n  = 13t+7 abc,def+ghi,jkl = 384,615, if n  = 13t+5 abc,def+ghi,jkl = 615,384, if n  = 13t+8 abc,def+ghi,jkl = 461,538, if n  = 13t+6 abc,def+ghi,jkl = 846,153, if n  = 13t+11

for t = 0 to 76,922, and in fact abc,edf = t.  The results are digit-rotations of 076,923×2 = 153,846. It is the period of the rational number 2/13 = 0.153846153846… or 0.153846), and the sums of first and last 3-digit numbers are always 999.

156,146

[Math.]  The 28th Keith number.

156,789

[Math.]  Number 156,789 misses 3 digits 2, 3 and 4 in 9 digits 1-9:

156,789×5 = 783945 misses 3 digits 1, 6 and 2 (modulo 9).

159,984

[Math.]

7,683,984 = 1584×4851 = 27722

782432784 = 15984×48951 = 279722

78384320784 = 159984×489951 = 2799722

7839843200784 = 1599984×4899951 = 27999722

783998432000784 = 15999984×48999951 = 279999722

7839…9984320000784 = 159…999984×489…999951 = 279…9999722

...