Numbers 140,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  100K  -  110K  -  120K  -  130K  -  140K  -  150K  -  160K   -  170K  -  180K  -  190K

[10K][100K…) * [200K…) * [300K…) * [400K…) * [500K…) * [600K…) * [700K…) * [800K…) * [900K…) &  1M

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

141,600

[Game]  The highest amount (U.S.$) that a “Jeopardy!” player can theoretically get at the end of “Double Jeopardy!” round, going to the final round: [((6×3000–200)×2)+(6×6000–(2×400))]×2×2 = 283,200. In the earlier years, it was only: [((6×1500–100)×2)+(6×3000–(2×200))]×2×2 = 141,600.

  

141,664

[Math.]  A pair of amicable numbers (141664, 153176).

 

142,310

[Math.]  A pair of amicable numbers (142310, 168730).

 

142,856 & 142,857

[Math.]  The 6-digit period of the rational number 1/7 = 0.142857142857… or 0.142857. Its multiple by 7 is 999,999.  Then,  142,857×n = abc,def,ghi,jkl and

abc,def+ghi,jkl = 142,857, if n  = 7t+1

abc,def+ghi,jkl = 571,428, if n  = 7t+4

abc,def+ghi,jkl = 285,714, if n  = 7t+2

abc,def+ghi,jkl = 714,285, if n  = 7t+5

abc,def+ghi,jkl = 428,571, if n  = 7t+3

abc,def+ghi,jkl = 857,142, if n  = 7t+6,

for t = 0 to 142,856, and in fact abc,edf = t. The results are digit-rotations of 142,857 and the sums of first and last 3-digit numbers are always 999.

 

142,857×5 = 714,285 = 8572–1422, where 857,142 = 142,857×6.

 

[Math.]  142,8572 = 20,408,122,449 = (20408+122449)2.

 

[Math.]

1×7 + 3 = 10

14×7 + 2 = 100

142×7 + 6 = 1000

1428×7 + 4 = 10000

14285×7 + 5 = 100000

142857×7 + 1 = 1000000

 

1428571×7 + 3 = 10000000

14285714×7 + 2 = 100000000

142857142×7 + 6 = 1000000000

1428571428×7 + 4 = 10000000000

14285714285×7 + 5 = 100000000000

142857142857×7 + 1 = 1000000000000

 

1428571428571×7 + 3 = 10000000000000

 


142,884

[Math.]  Sum of the first 27 cube numbers:

13+23+33+…+253+263+273 = 142,884 = (1+2+3+…+25+26+27)2 = 3782.

 

144,648

[Math.]  144,648 = 861×168 = 492×294. 

 

144,690

[Math.]  Two consecutive sums of consecutive numbers:

2704+…+2756 = 2757+…+2808 = 144,690.

 

145,679

[Math.]  A prime number.  Number 145,679 misses 3 digits 2, 3 and 8 in 9 digits 1-9:

145,679×2 = 291,358 misses 3 digits 4, 6 and 7 (modulo 9).

145,679×5 = 728,395 misses 3 digits 1, 6 and 4 (modulo 9).

 

145,689

[Math.]  Number 145,689 misses 3 digits 2, 3 and 7 in 9 digits 1-9:

145,689×2 = 291,378 misses 3 digits 4, 6 and 5 (modulo 9).

 

145,789

[Math.]  Number 145,789 misses 3 digits 2, 3 and 6 in 9 digits 1-9:

145,789×2 = 291,578 misses 3 digits 4, 6 and 3 (modulo 9).

145,789×5 = 728,945 misses 3 digits 1, 6 and 3 (modulo 9).

 

146,097

[Calendar]  The number of days in a 400-year period in a currently-used Gregorian year, after the adoption of the Gregorian calendar, created by Pope Gregory XIII in 1582 to reform the old Julian calendar. Three days less than such number for a Julian calendar.

 

146,100

[Calendar]  The number of days in a 400-year period in a Julian calendar.

 

146,789

[Math.]  Number 146,789 misses 3 digits 2, 3 and 5 in 9 digits 1-9:

146,789×2 = 293,578 misses 3 digits 4, 6 and 1 (modulo 9).

 

147,640

[Math.]  The 27th Keith number.

 

148,149

[Math.]  21,948,126,201 = (21948+126,201)2 = 148,1492 and 725,650,126,201 = (725650+126201)2 = 851,8512 and 149,149+851851 = 1,000,000.

 

148,349

[Math.]  The only number that is equal to the sum of subfactorials of its digits: 

148,349 = !1+!4+!8+!3+!4+!9.

 

148,761

[Math.]  33,058,148,761 = (33,058+148,761)2 = 181,8192 and

669,420,148,761 = (669420+148761)2 = 818,1812 and 181819+818181 = 1,000,000.