Numbers 12,000,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

11,000,00012,000,00013,000,000 – 14,000,000

15,000,00016,000,00017,000,00018,000,00019,000,000

All Numbers  & [1M] & [10M- [20M] - [30M] - [40M] - [50M] - [60M] - [70M] - [80M] - [90M]  &  [100M]

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

12,024,045

[Math.]  A pair of amicable numbers (11498355, 12024045).

12,070,305

[Math.]  A pair of amicable numbers (10992735, 12070305).

12,101,272

[Math.]  A pair of amicable numbers (11252648, 12101272).

12,152,196

[Math.]  Sum of the first 83 cube numbers:

13+23+…+823+833 = 12,152,196 = (1+2+…+82+83)2 = 34862.

12,173,121

[Math.]  34892 = 12,173,121.

12,247,504

[Math.]  A pair of amicable numbers (11545616, 12247504).

12,345,000s (separate page)

12,346,789

[Math.]  Number 12,346,789 misses one digit 5 in 9 digits 1-9:

12,346,789×2 = 24,693,578 misses one digit 1 (modulo 9)

12,346,789×4 = 49,387,156 misses one digit 2 (modulo 9).

12,356,789

[Math.]  A prime number (with strictly increasing digits).

12,356,789

[Math.]  Number 12,356,789 misses one digit 4 in 9 digits 1-9:

12,356,789×5 = 61,783,945 misses one digit 2 (modulo 9)

12,356,789×7 = 86,497,523 misses one digit 1 (modulo 9).

12,361,622

[Math.]  A pair of amicable numbers (11693290, 12361622).

12,397,552

[Math.]  A pair of amicable numbers (12397552, 13136528).

12,456,789

[Math.]  Number 12,456,789 misses one digit 3 in 9 digits 1-9:

12,456,789×2 = 24,913,578 misses one digit 6 (modulo 9)

12,456,789×4 = 49,827,156 misses one digit 3 (modulo 9).

12,707,704

[Math.]  A pair of amicable numbers (12707704, 14236136).

12,744,900

[Math.]  Sum of the first 84 cube numbers:

13+23+…+833+843 = 12,744,900 = (1+2+…+83+84)2 = 35702.

12,752,043

[Math.]  The 34th Lucas number.

12,890,625

[Math.]  An automorphic number, whose powers end with the number itself. It is extracted from a 17-digit automorphic number 56,259,918,212,890,625, which remains automorphic when dropping the left-most digits.

xy,abc,def

[Math.] For any xy = 10 to 99, there are always six 6-digit numbers abc,edf such that the sum (xy+abc,def) is equal to one of 6 digit-rotations of 142,857 and the number xy,abc,def is a multiple of 142,857.

For any xy = 10 to 99, there are always twelve 6-digit numbers abc,edf such that the sum (xy+abc,def) is equal to one of 12 digit-rotations of 076,923 or 153,846 and the number xy,abc,def is a multiple of 76,923.