Numbers 120,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  100K  -  110K  -  120K  -  130K  -  140K  -  150K  -  160K  -  170K  -  180K  -  190K 

[10K][100K…) * [200K…) * [300K…) * [400K…) * [500K…) * [600K…) * [700K…) * [800K…) * [900K…) &  1M

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q ...

120,000

[EECS]  120K(W) is one of standard numerical values for resistors (of tolerance class 5%).

 

120,284

[Math.]  The 25th Keith number.

 

121,275

[Math.]  Two consecutive sums of consecutive numbers: 2401+…+2450 = 2451+…+2499 = 121,275.

 

121,393

[Math.]  The 26th Fibonacci number.

 

122,221

[Math.]

222223 = 10,973,607,685,048 and 1097+36076+85048 = 122,221.

555553 = 171,462,620,078,875 and 17146+26200+78875 = 122,221.

88,8883 = 702310891843072 and 70231+08918+43072 = 122,221.

 

122,265

[Math.]  A pair of amicable numbers (122265, 139815).

 

122,368

[Math.]  A pair of amicable numbers (122368, 123152).

 

122,410  

[Math.]  The 2nd known amicable/sociable number chain: 14316 → 19116 → 31704 → 47616 → 83328 → 177792 → 295488 → 629072 → 589786 → 294896 → 358336 → 418904 → 366556 → 274924 → 275444 → 243760 → 376736 → 381028 → 285778 → 152990 → 122410 → 97946 → 48976 → 45946 → 22976 → 22744 → 19916 → 17716 → 14316. (of 28 links, currently the longest, found by Poulet, 1918)

 

123,000-123,999 (separate page)

 

124,155

[Math.]  A pair of amicable numbers (100485, 124155), the smallest 6-digit pairs.

 

124,569

[Math.]  Number 124,569 misses 3 digits 3, 7 and 8 in 9 digits 1-9:

124,569×2 = 249,138 misses 3 digits 6, 5 and 7 (modulo 9)

124,569×4 = 498,276 misses 3 digits 3, 1 and 5 (modulo 9).

 

124,579

[Math.]  Number 124,579 misses 3 digits 3, 6 and 8 in 9 digits 1-9:

124,579×2 = 249,158 misses 3 digits 6, 3 and 7 (modulo 9)

 

124,589

[Math.]  Number 124,589 misses 3 digits 3, 6 and 7 in 9 digits 1-9:

124,589×2 = 249,178 misses 3 digits 6, 3 and 5 (modulo 9)

 

124,679

[Math.]  A prime number. Number 124,679 misses 3 digits 3, 5 and 8 in 9 digits 1-9:

124,679×2 = 249,358 misses 3 digits 6, 1 and 7 (modulo 9)

124,679×4 = 498,716 misses 3 digits 3, 2 and 5 (modulo 9).

 

124,689

[Math.]  Number 124,689 misses 3 digits 3, 5 and 7 in 9 digits 1-9:

124,689×2 = 249,378 misses 3 digits 6, 1 and 5 (modulo 9)

124,689×4 = 498,756 misses 3 digits 3, 2 and 1 (modulo 9).

 

124,789

[Math.]  Number 124,789 misses 3 digits 3, 5 and 6 in 9 digits 1-9:

124,789×2 = 249,578 misses 3 digits 6, 1 and 3 (modulo 9)

 

124,875

[Tech.] Credit cards and others identifying numbers, of any length a1an–1, used the IBM check digit scheme of modulo 10. The scheme used the permutation p = (0)(1,2,4,8,7,5)(3,6)(9), so it can catch single digit errors and adjacent-digit tranposition errors, except that involve 0 and 9. The check digit an is added to the right end of the number, such that:

- If n is even, p(a1)+a2+…+p(an–1)+an = 0 modulo 10,

- If n is odd, a1+p(a2)+…+p(an–1)+an = 0 modulo 10.

 

125,000

[Tech.]  A frequency used by proximity card technology: 125 kHz.

A frequency used by contactless smart card technology: 13.56 MHz.

 

[Game]  In the popular TV game show “Who Wants to be a Millionaire?”, a contestant has to answer correctly 15 questions to step up the fixed prizes in U.S.$: 100, 200, 300, 500, 1000, to 2000, 4000, 8000, 16,000, 32,000, to 64,000, 125,000, 250,000, 500,000 and the maximum amount is at least $1,000,000, with 3 lifelines: polling the audience, calling a friend and narrowing to “50:50” answers. The guaranteed middle prizes can be $1000 or $32,000.

 

[Tech.]  The speed of electrons travel through copper or fiber is approximately 125,000 miles/second (or about 201,168 km/hours.)

 

125,959

[Trivia] The largest number (also the largest prime number) that can be displayed on a digital clock in the 12-hour format (excluding the colon “:”) is 12:59:59.

 

126,126

[Math.]  126,126 = 76+65+54+43+32+21+10.

 

126,201

[Math.]  21,948,126,201 = (21948+126,201)2 = 148,1492 and 725,650,126,201 = (725650+126201)2 = 851,8512 and 149,149+851851 = 1,000,000.

 

126,217

[Math.]  A Carmichael number: 126,217 = 7×13×19×73.

 

127,194

[Math.]  127,194,229,449 = (127194+229449)2 = 356,6432 and 413,908,229,449 = (413908+229449)2 = 643,3572 and 356,643+643357 = 1,000,000.

 

128,000

[Tech.]  One of standardized baud rate (bits per second) in electronic data transmissions.

 

128,205

[Math.]  128,205×4 = 512,820.

 

128,775

[Math.]  Two consecutive sums of consecutive numbers:

2500+…+2550 = 2551+…+2600 = 128,775.

 

129,032

[Math.]  1/31 = 0.032,258,064,516,129 = 0.032,258,064,516,129,032,258,064,516,129… where 032,258×2 = 064,516; 064,516×2 = 129,032 and 129,032×2 = 258,064. Similarly, 1/62 = 0.0161,290,322,580,645 = 0.016,129,032,258,064,516,129,032,258,064,5… and 1/124 =  0.00806451612903225  = 0.0080645,16129,032258,064516,129032,258064,…

 

129,106

[Math.]  The 26th Keith number.