Numbers 25,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  20K  -  21K  -  22K  -  23K  -  24K  -  25K   -  26K  -  27K  -  28K  -  29K

& [100K]...

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q - ...

25,000

[Game]  The minimum cash value on the “Wheel of Fortune” is currently (U.S.) \$300.  The top values if currently \$2,500 for round 1, \$3,500 for rounds 2 and 3 and \$5,000 for round 4 until the end of the game. The highest cash value in the special prize is \$10,000. A player need \$250 in cash during the current round in order to buy a vowel.  In the Bonus round, the minimum cash prize is currently \$25,000 and maximum is \$100,000.

[Game]  In the popular TV game show “Deal or No Deal”, a contestant has the choices of one of 26 suitcases of the prizes U.S. \$0.01, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500, 750, 1000, 5000, 10,000, 25,000, 50,000, 75,000, 100,000, 200,000, 300,000, 400,000, 500,000, 750,000 and the maximum amount is at least \$1,000,000 (in a typical show).

25,059

[Math.]  250592 = 627,953,481, one of thirty 9-digit square numbers using each of 9 digits 1-9 once.

25,168

[Math.]  A product of two digit-reversal numbers: 2,576,816×6,186,752 = 251683.

25,279

[Math.]  252792 = 639,027,841, a square using all 9 digits 0-9 once, except digit 5.

25,281

[Math.]  Three square numbers using the same digits: 1352 = 18225, 1592 = 25281 and 2852 = 81225.

25,333

[Math.]  825333 = 14+24+34+44+54+64+74+84+94+104.

25,407

[Math.]  Two multiples of number 8469, 8469×2 = 16,938 and 8469×3 = 25,407, use each of 10 digits 0-9 once.

25,496

[Math.]  Two multiples of number 6374, 6374×4 = 25,496 and 6374×5 = 31,870, use each of 10 digits 0-9 once.

[Math.]  The ratio 25496/3187 = 8, using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #8.

25,555

[Zip]  U.S. Postal Zip Code: Prichard, West Virginia 25555.

25,572

[Math.]  255722 = 653,927,184, one of thirty 9-digit square numbers using each of 9 digits 1-9 once.

25,600

[Math.]  Three square numbers using the same digits: 1602 = 25600, 2452 = 60025 and 2502 = 62500.

25,641

[Math.]  025,641×4 = 102,564.

025,641×16 = 410,256.

25,665

[Math.]  Two consecutive sums of consecutive numbers:

841+842+…+870 = 871+872+…+899 = 25,665.

25,840

[Math.]  2,584,043,776 = 258402+437762 and

7,416,043,776 = 741602+437762, where 74160+25840 = 100,000.

25,893

[Math.]  Two multiples of number 8631, 8631×3 = 25,893 and 8631×7 = 60,417, use each of 10 digits 0-9 once.

25,902

[Zip]   U.S. Postal Zip Code: Odd, West Virginia 25902.

25,941

[Math.]  259412 = 672,935,481, one of thirty 9-digit square numbers using each of 9 digits 1-9 once.

25,963

[Math.]  Two multiples of number 3709, 3709×2 = 7418 and 3709×7 = 25,963, use each of 9 digits 1-9 once.

25,986

[Math.]  Reversible: 25,986 = 213×122 and 312×221 = 68,952.

25nnn

[Zip]  U.S. Postal Zip Codes of West Virginia: 247nn-249nn and 25nnn-26nnn.