Navigation

Numbers 13,000s

A page of the Numeropedia - the Special Encyclopedia of Numbers

All Numbers  &  10K -  11K  -  12K  -  13K  -  14K  -  15K  -  16K  -  17K  -  18K  -  19K

[1K] & [10K…) * [20K…) * [30K…) * [40K…) * [50K…)[60K…) * [70K…) * [80K…) * [90K…)  & [100K]...

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q - ... 

 13,000

[EECS]  13K(W) is one of standard numerical values for resistors (of tolerance class 5%).

 

[Gov.]  The U.S. National Exit Poll was designed to survey at least 13,000 respondents.

 

13,107

[Math.]  A regular polygon with this odd number (product of Fermat prime numbers) of sides is constructible by using only straightedge and compass. 13107 = 3×17×257.

 

13,147

[Math.]  A prime number.  131472 = 172,843,609, a square using all 9 digits 0-9 once, except digit 5.

 

13,268

[Math.]  132682 = 176,039,824, a square using all 9 digits 0-9 once, except digit 5.

 

13,278

[Math.]  132782 = 176,305,284, one of 22 squares using all 9 digits 0-8 once.

 

13,334

[Math.]  133,346,667 = 13,3342–66672 = (13334+6667)×6667, where 13334 = 6667×2.

 

13,343

[Math.]  133432 = 178,035,649, a square using all 9 digits 0-9 once, except digit 2.

 

13,434

[Math.]  134342 = 180,472,356, one of 22 squares using all 9 digits 0-8 once.

 

13,458

[Math.]  The ratio 13458/6729 = 2, using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #2.

 

13,467

[Math.]  13,467 = 1342–672 = (134+67)×67, where 134 = 67×2.

 

13,485

[Math.]  The ratio 13485/2697 = 5, using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #5.

 

13,509

[Geology]  The “Traveling Salesman Problem” for 13,509 cities (of population at least 500) in the U.S. solved in 1998.

 

13,530

[Math.]  The denominator of the 40th Bernoulli number.

 

13,545

[Math.]  135452 = 183,467,025, one of 22 squares using all 9 digits 0-8 once.

 

13,584

[Math.]  The ratio 13584/6792 = 2 using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #2.

 

13,597

Math.]  The smallest prime number of all 5 different odd digits.

 

13,698

[Math.]  136982 = 187,635,204, one of 22 squares using all 9 digits 0-8 once.

 

13,698

[Math.]  Two multiples of number 6849, 6849×2 = 13,698 and 6849×3 = 20,547, use each of 10 digits 0-9 once.

 

13,759

[Math.]  A prime number of all 5 different odd digits.

 

13,790

[Math.]  Two multiples of number 6895, 6895×2 = 13,790 and 6895×7 = 48,265, use each of 10 digits 0-9 once.

 

13,832

[Math.]  A number that is the sum of 2 cube numbers in 2 ways: 13,832 = 243+23 = 203+183.

 

13,845

[Math.]  The ratio 13845/2769 = 5, using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #5.

 

13,854

[Math.]  Each ratio 13854/6927 = 2, using each of 9 digits 1-9 once, shows how to arrange a 9-book set on 2 shelves to mark the book #2.

 

13,955

[Literature]  A famously long sentence in English literature is of 13955-word, in Jonathan Coe’s “The Rotters’ Club”.

 

13nnn

[Zip]  U.S. Postal Zip Codes of New York: 10nnn-14nnn and 005nn.