Number 15 in Math

A page of the Numeropedia - the Special Encyclopedia of Numbers

[10-19]:  10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19

All Numbers  &   [0-9]  &  10-19    20-29  30-39  40-49  50-59  60-69  70-79  80-89  90-99  100

1  - 10 - 100  - 1000 - 10,000 - 100,000 - 1M - 10M - 100M1B10B - 100B - 1T - 10T - 100T - 1Q - ...

Number 15 in Math.     Number 15 in Sports    Number 15    (More Math. pages)

 

A triangular number: 15 = 1+2+3+4+5.

The pair 15 and 21 is the smallest pair of triangular numbers whose sum (36) and difference (6) are also triangular.

 

Two consecutive sums of consecutive numbers: 4+5+6 = 7+8 = 15.

 

Product of the first 2 odd prime numbers (or first 2 Fermat prime numbers): 15 = 3×5.

 

A regular polygon with this odd number (product of Fermat prime numbers) of sides is constructible by using only straightedge and compass. 15 = 3´5.

 

The smallest composite number that there is only one finite group whose order equals that number.

 

154 = 44+64+84+94+144 = 50,625. The smallest 4th power that can be expressed as the sum of five 4th powers.

 

A base system of multigrade equalities:

1+6+8 = 15 = 2+4+9 and

12+62+82 = 101 = 22+42+92.

 Multigrade equalities still hold by adding any integer n to every base term in both sides.  Hence, the base equality always has number 1 appearing in one side.

 

759,375 = (7–5+9–3+7)5 = 155.

 

Repeatedly inserting numbers 15 in the middle of the square number 16 yields other squares 1156 = 342, 111556 = 3342, 11115556 = 33342

 

 Inserting 72 between 2 digits 2 in the square number 225 = 152 and repeatedly inserting numbers 72 between the digits 7 and 2 yields other squares 27225 = 1652, 2772225  = 16652, 277722225 = 166652, 27777222225 = 1666652, 2777772222225 = 16666652

 

From the most basic 3×3 magic square, where sum of 3 numbers in each row, column and main (left & right) diagonals are all 15:

8

1

6

3

5

7

4

9

2

.   rows:           8162+3572+4922 = 1,035,369 = 6182+7532+2942

.   columns:      8342+1592+6722 = 1,172,421 = 4382+9512+2762

.   right diagonals:  8522+1742+6392 = 1,164,501 = 2582+4712+9362

     and                    8522+3962+4172 = 1,056,609 = 2582+6932+7142

.   left diagonals:    6542+8792+1322 = 1,217,781 = 4562+9782+2312

     and                    6542+7982+2132 = 1,109,889 = 4562+8972+3122.

 

The number of prime factors of the order of the Monster group M: 246×320×59×76×112×133×17×19×23×29×31×41×47×59×71 = 808017424794512875886459904961710757005754368000000000.