**Causality Testing **(with Aditi Kathpalia)

Causality testing, the act of determining cause and effect from measurements, is widely used in physics, climatology, neuroscience, econometrics and other disciplines. As a result, a large number of causality testing methods based on various principles have been developed. Causal relationships in complex systems are typically accompanied by entropic exchanges which are encoded in patterns of dynamical measurements. A data compression algorithm which can extract these encoded patterns could be used for inferring these relations. This motivates us to propose, for the first time, a generic causality testing framework based on data compression. The framework unifies existing causality testing methods and enables us to innovate a novel Compression-Complexity Causality measure. This measure is rigorously tested on simulated and real-world time series and is found to overcome the limitations of Granger Causality and Transfer Entropy, especially for noisy and non-synchronous measurements. Additionally, it gives insight on the `kind' of causal influence between input time series by the notions of positive and negative causality.

For further details, see: https://arxiv.org/abs/1710.04538

**Information, Complexity and Consciousness **(with Mohit Virmani)

**Neural Signal Multiplexing**(with K R Sahasranand)

**Perspectives on Complexity**(with Karthi Balasubramanian)

**Complexity**". There are several perspectives on complexity and what constitutes complex behaviour or complex systems, as opposed to regular, predictable behaviour and simple systems. We explore the following perspectives on complexity: "effort-to-describe" (Shannon entropy H, Lempel-Ziv complexity LZ), "effort-to-compress" (ETC complexity) and "degree-of-order" (Subsymmetry or SubSym). While Shannon entropy and LZ are very popular and widely used, ETC is a recently proposed measure for time series. We also propose a novel normalized measure SubSym based on the existing idea of counting the number of subsymmetries or palindromes within a sequence. We compare the performance of these complexity measures on the following tasks: a) characterizing complexity of short binary sequences of lengths 4 to 16, b) distinguishing periodic and chaotic time series from 1D logistic map and 2D H\'{e}non map, and c) distinguishing between tonic and irregular spiking patterns generated from the "Adaptive exponential integrate-and-fire" neuron model. Our study reveals that each perspective has its own advantages and uniqueness while also having an overlap with each other.

**Aging and Cardiovascular Complexity**(with Karthi Balasubramanian)